Math 290-2 Class 7

Monday 22nd January 2019

Orthogonal change-of-basis and conic sections

Recall that if 8 is a basis of R”, then the transition matrix S, whose columns are the vectors in
B, allows us to translate between standard coordinates and *B-coordinates: applying S ‘decodes’
fB-coordinates (S[¥]s = %), and applying $~! *encodes’ into B-coordinates (§~1% = []s).

When the vectors in ‘B are orthonormal, the matrix § is orthogonal, and so angles and lengths are
preserved when we view the world through the lens of B-coordinates.
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Letting ( b) be the B-coordinate vector of (;) , it turns out that

3a*+7p% =1

We see from the point of view of 28-coordinates that the equation
describes an ellipse, whose principal axes are the vectors in 8.

Quadratic forms

A quadratic form is a function g : R” — R such that ¢(¥) is a linear combination of terms of the
form x;x;. For example, in R?, all quadratic forms take the form g(x,y) = ax> + bxy + cy*.

Every quadratic form can be expressed (uniquely!) as g(¥) = ¥T A% for some symmetric matrix A.
For example
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Let B is an orthonormal eigenbasis of A, whose respective eigenvalues are A, Ap,...,A,, and let §
be the (orthogonal) transition matrix of 8. For any vector X, let ¢ be its B-coordinate vector and let
D = STAS be the diagonal matrix with diagonal entries A, 45, ..., A,. Then

g(® = ¥ A% = (SE)TA(SC) = 7STASE = &DE = |Mici+hacs+ -+ Ancl

This gives us very useful information about the quadratic form and about A.
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Definiteness

Let A be a symmetric 7 X n matrix and let g(¥) = ¥ AX be its associated quadratic form. Then

o We say A is positive definite if g(X) > 0 for all ¥ # 0, and positive semidefinite if () > 0
for all X.

e We say A is negative definite if g(¥) < 0 for all ¥ # 0, and negative semidefinite if 4(¥) < 0
for all X.

o We say A is indefinite if g(¥) takes both positive and negative values.

Knowing the definiteness of a symmetric matrix allows us to reason about whether its associated
quadratic form has global maxima and minima—when we study vector calculus, this will allow us
to classify local extrema of surfaces described by multivalued functions.

Some useful facts:

e A is positive definite <> all its eigenvalues are positive, and A is positive semidefinite < all
its eigenvalues are nonnegative. [Likewise for negative (semi)definiteness.]

e A is positive definite < det(A%®)) > 0 for all 1 < k < n, where A®) s the top left k x &
submatrix of A (called a principal submatrix}.

It turns out that the definiteness of a matrix gives us useful information about surfaces of the form

ax® +bxy+cy’ = 1in R2. Indeed, let A = (b‘/12 bé 2) be the associated symmetric matrix. Then

e ax’ 4 bxy+cy? = 1 describes an ellipse if and only if A is positive definite;
o ax’ 4 bxy+cy* = 1 describes a hyperbola if and only if A is indefinite;
¢ In both cases, the principal axes of the curve in question are given by the eigenspaces of A.

More generally, the principal axes of a quadratic form g(¥) = ¥” AX, where A is a symmetric matrix
with distinct eigenvalues, are the eigenspaces of A.



1. For each of the following quadratic forms, find a matrix A such that g(¥) = ¥ A%.
@ qlx,y) =" -2y — 4
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®) qlx,,2) = —2x> 4+ y* — 3z —dxy — 6xz + 8yz
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2. [Bretscher §8.2 Ex 1, modified)
Find the giobal maxima and minima of the quad;a&e—fem-f R? — R defined by

ﬂx,y) =8 + 57 —dxy+1
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3. For each of the following symmetric matrices, determine whether it is positive definite, pos-
ittve semidefinite, negative definite, negative semidefinite, or indefinite.

@ (_11 _11)
dot (A) = 1, det (A®) =0
= fposf‘lw'ue s‘ewdaﬁmﬁe

g (AW) =z et (AT) = 9ok =S
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9 -1 2
©) (—1 7 —3) [taken from Bretscher §8.2 Fx 2]
2 -3 3

AAT) =4 gk (A7) = AT - 02
Akl@®) = 2|0 5] —z)32) 2] 2 3]

=7
= 2{z2-) -3E2FR) + ez
2-(-) =3 (-75) +3.47
= =22 39S + 3.47

o
7 = Jrve doflude




4. Sketch the curve in R? defined by 8x% — 4xy+5y° = 1.

. éf[scr:p = Brl- LH(j +§32' =
o olet (AM) =8,

L]

XAR S A= S'.Z

olek (ﬁm): LO-6=36 D A p +uve dofaite

go dg e WV G ellipse .
= (A-D0-9) 5 evadoae 4,9

f(8) = A*-13A +26

y -2

A-4L = (-

‘)

P AT (50
;.’\ R’“ covd:no-l-l’,ﬂ,

So

S?Mf-fg) N

I\

> (Ei) g oA oije/lu-ec*iff

(Z‘) o o eA'jauedv\r' g_b’ag 5.(2 5':5__"

'-"l Ulz_

e coove » Lt + 95 =

.SPM { ﬁ'l)

5. Sketch the curve in R? defined by 3x% + 8xy — 3y? = 1.
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