Math 290-3 Class 1

Monday 1st April 2019

Double integrals

A bounded integral $\int_{a}^{b} f(x) d x$ tells us the area under the curve $y=f(x)$ above the interval $[a, b]=$ $\{x: a \leqslant x \leqslant b\}$. Intuitively, the integral adds up the heights of the points $(x, f(x))$ for $a \leqslant x \leqslant b$.

Double integrals are the generalisation of (bounded) integrals to functions of two variables: the double integral $\iint_{D} f(x, y) d A$ tells us the volume under the surface $z=f(x, y)$ above the region D of the (x, y)-plane.

When D is the square region $[a, b] \times[c, d]=\{(x, y): a \leqslant x \leqslant b, c \leqslant y \leqslant d\}$ and f is sufficiently well-behaved ${ }^{\star}$ on D, there are two ways that we can compute $\iint_{D} f(x, y) d A$:

- Find the areas under the curves $z=f(x, y)$ for fixed $a \leqslant x \leqslant b$ (by integrating with respect to y, holding x constant); then 'add up' these areas by integrating with respect to x :

$$
\iint_{[a, b] \times[c, d]} f(x, y) d A=\int_{a}^{b}\left(\int_{c}^{d} f(x, y) d y\right) d x
$$

- Find the areas under the curves $z=f(x, y)$ for fixed $c \leqslant y \leqslant d$ (by integrating with respect to x, holding y constant); then 'add up' these areas by integrating with respect to y :

$$
\iint_{[a, b] \times[c, d]} f(x, y) d A=\int_{c}^{d}\left(\int_{a}^{b} f(x, y) d x\right) d y
$$

Note that, in particular, the two iterated integrals are equal-this fact is called Fubini's theorem.
[${ }^{\star}$ Every function we will encounter is 'sufficiently well-behaved' for the purposes of applying Fubini's theorem.]

1. Compute $\iint_{[1,2] \times[-1,1]} x e^{x y} d A \ldots$
(a) \ldots by first integrating with respect to y and then with respect to x.
(b) ... by first integrating with respect to x and then with respect to y.
2. Use double integration to show that the volume of a cube of width a, length b and height c is equal to $a b c$.
3. Find the volume of the solid bounded by the (x, y)-plane, the plane $x=1$, the plane $x=-1$, the plane $z=1+y$ and the plane $z=2-y$.
