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Methods inspired from the algebraic geometry of realizable matroids has recently
led to fruitful developments in matroid theory. We introduce a new framework that
recovers, unifies, and extends these developments. For notations and conventions
regarding matroids, we point to [11] as a standard reference.

Let M be a matroid of rank r on a nonempty ground set E = {0, 1, . . . , n}. Let
T = (C∗)E be the algebraic torus with the standard action on CE . A realization
(over C) of M is an r-dimensional linear subspace L ⊆ CE such that the set

of bases of M equals the subcollection {B ∈
(
E
r

)
| L ∩

⋂
i∈B Hi = {0}} of size

r subsets of E. Here Hi denotes the i-th coordinate hyperplane of CE . Let
XE be the permutohedral variety of dimension n, which is obtained from Pn by
sequentially blowing up from lower to higher dimensions (the strict transforms of)
all coordinate subspaces of Pn. It is a toric variety with the open torus T/C∗, the
quotient of T by the diagonal copy of C∗.

Given a realization L ⊆ CE of a matroid M , we define two T -equivariant vector
bundles SL and QL on the permutohedral variety XE as follows.

Definition 1. The tautological subbundle SL (resp. the tautological quo-
tient bundle QL) is the unique torus-equivariant vector bundle whose fiber over
a point t in the open torus T/C∗ of XE is t−1L (resp. CE/t−1L).

The T -equivariant K-classes of SL and QL depend only on the matroid M that
L realizes, and one can thus define T -equivariant K-classes [SM ] and [QM ] on XE

for an arbitrary, not necessarily realizable matroid M . The Chern classes of these
tautological classes recover previously studied geometric models of matroids:

• The first Chern class c1(QM ) equals the nef divisor class on XE corre-
sponding to the base polytope [8] of the matroid M .
• The top Chern class c|E|−r(QM ) equals the Bergman class ∆M of the

matroid M as studied in [12, 9], which coincides with the homology class
in XE of the wonderful compactification [5] of a realization L of M when
M has a realization.
• The products of Chern classes ci(SM )c|E|−r(QM ) for 0 ≤ i ≤ r equal the

Chern-Schwartz-MacPherson (CSM) classes of a matroid M introduced
in [10], and coincides with the CSM classes of the associated hyperplane
arrangement complement when the matroid has a realization.

The permutohedral variety XE resolves the rational Cremona map Pn 99K Pn.
Let α and β be divisor classes on XE obtained as the pullbacks of the hyperplane
class from each Pn. We express the Tutte polynomial of a matroid, which is
the universal deletion-contraction invariant of matroids, in terms of intersection
multiplicities of α, β, and Chern classes of SM and QM .
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Theorem 1. Let
∫
XE

: A•(XE)→ Z be the degree map on XE , and TM (u, v) the

Tutte polynomial of a rank r matroid M on ground set E. Then, one has∑
i+j+k+`=n

(∫
XE

αiβjck(S∨M )c`(QM )

)
xiyjzkw` =

(x+ y)−1(y + z)r(x+ w)|E|−rTM

(x+ y

y + z
,
x+ y

x+ w

)
.

We also establish a log-concavity property for the Tutte polynomial. For a
homogeneous polynomial f ∈ R[x1, . . . , xN ] of degree d with nonnegative co-
efficients, we say that its coefficients form a log-concave unbroken array if, for
any 1 ≤ i < j ≤ N and a monomial xm of degree d′ ≤ d, the coefficients of

{xki x
d−d′−k
j xm}0≤k≤d−d′ in f form a log-concave sequence with no internal zeros.

Theorem 2. The coefficients of the polynomial

tM (x, y, z, w) = (x+ y)−1(y + z)r(x+ w)|E|−rTM

(x+ y

y + z
,
x+ y

x+ w

)
form a log-concave unbroken array.

The two theorems together unify, recover, and extend several previous geometric
interpretations for the Tutte polynomial and the log-concavity properties for the
characteristic polynomial of a matroid, as given in [1, 3, 7, 9, 10, 2]. We prove
Theorem 1 by using the method of localization in torus-equivariant geometry, and
Theorem 2 by using methods from tropical Hodge theory. Previous geometric
frameworks for studying matroids were disjoint in the sense that one could not
easily use both of these two fundamental methods within one framework.

In order to use Theorem 1 to recover previous K-theoretic interpretations of the
Tutte polynomial of a matroid, we develop an exceptional Hirzebruch-Riemann-
Roch type formula for permutohedral varieties.

Theorem 3. There exists a ring isomorphism ζXE
: K0(XE)

∼→ A•(XE) which
satisfies

χ
(
[E ]
)

=

∫
XE

(1 + α+ · · ·+ αn) · ζE([E ])

for any [E ] ∈ K0(XE). Denote by
∧i

for the i-th exterior power and c(E , u) :=∑
i≥0 ci(E)ui the Chern polynomial of [E ]. If [E ] “has simple Chern roots” (which

S∨M and Q∨M do) and rank rk(E), then we have∑
i≥0

ζXE

(
[
∧i E ]

)
ui = (u+ 1)rk(E)c(E , u

u+1 ), and

∑
i≥0

ζXE

(
[
∧i E∨]

)
ui = (u+ 1)rk(E)c(E , 1)−1c(E , 1

u+1 ).

The map ζE is not the Chern character map, and the Chow class (1+α+· · ·+αn)
is not the Todd class of XE . The proof of Theorem 3 is a purely algebraic. We
use the localization methods for T -equivariant K-theory and T -equivariant Chow
rings of toric varieties along with the Atiyah-Bott localization formula.
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Question 1. Is there a geometric interpretation or a proof of this Hirzebruch-
Riemann-Roch type formula (Theorem 3)?

Remark 1. One can show that the map ζE is the unique isomorphism that sends
[OWL

], the K-class of the structure sheaf of the wonderful compactification WL

associated to a realization L of a matroid, to the Chow class [WL] in XE of WL

as a subvariety of XE . However, this description of ζE makes it unclear why such
isomorphism should even exist.

Theorem 3 also opens new questions about wonderful compactifications. For
instance, it implies that for a realization L ⊆ KE of a matroid M over an alge-
braically closed field K of arbitrary characteristic, one has that the Euler charac-
teristic of the line bundle detQM pulled back to WL satisfies

χ(detQM ;WL) = |µ(M)|,
where µ(M) is the constant coefficient of the characteristic polynomial of M .
Separately, one can show by computation that also h0(detQM ;WL) = |µ(M)|.

Question 2. Is Hi(detQM ;WL) = 0 for all i > 0?

When the realization L is over a field of characteristic zero, one can show via
Kawamata-Viehweg vanishing theorem that Hi(detQM ;WL) = 0 for all i > 0.
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