Lecture 3

Simplicial cplx IN(M) specified by: facets \iff bases faces \iff indep. subsets min'l non-faces <-> circuits <u>Defn</u> A <u>circuit</u> of M is a minimal dependent (i.e. not indep.) subset of E. $G_{e} = \frac{1}{2}012,234,0134$ (minimal supports of vectors $If M = M \begin{pmatrix} 1 - 1 \circ \circ \circ \\ \circ - 1 \cdot 1 \circ - 1 \\ 0 \circ \circ (1 - 1) \end{pmatrix} \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix} \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$ in kerA) Thm A collection $C \subset 2^E$ is the set of circuits of a matroid iff (I) Ø∉C, (2) $G \subseteq G_2 \Rightarrow G = G_2$ for $G, G \in G_2$, and (circuif (circuif (eliminacia)(3) for $G \neq G \in G_2$ with $e \in G \cap G_2$, $\exists C \in G_2$ at $C \subseteq (G \cup G_2) - e$. Rem How would you "quickly" compute Ge from B, and vice versa? M2 currently uses that IINM, the Stanley-Reisner ideal of IN(M), is $(\bigcap_{B \in \mathbb{R}} \langle \mathcal{X}_i | i \notin B \rangle = \langle \prod_{i \in C} \mathcal{X}_i | C \in C_e \rangle$ Rem [Varbaro'll, Ninh-Trung'll] ID CM VM >1 A = IN(M) for some matroid M pure & shellable > Is has linear resolu Defn A subset is spanning in a matroid if it contains a basis. A maximal non-spanning subset is a <u>hyperplane</u> of the matroid. Exer If C a circuit and H a hyperplane, then $|C \setminus H| \neq 1$. <u>Defin</u> The rank function $rk_M: 2^E \longrightarrow \mathbb{Z}_{20}$ of a matroid $M = (E, \mathbb{B})$ is defined by $rk_M(S) := max \{ |S \cap B| | B \in \mathbb{R} \}$ E.q. If M realized as a list of vectors (v_0, \dots, v_n) , then $rk_M(S) = \dim span(S)$.

$$\frac{\text{Notation}}{\text{LF}} := \{ l \in L \mid \forall i(l) = 0 \ \forall i \in F \} = \bigcap_{i \in F} L_i \quad (L_{\varphi} = L).$$

$$L = L \setminus \bigcup_{i \in E} L = L \cap (\mathbb{R}^*)^E$$

$$\simeq \mathbb{C}^* \times \mathbb{P}_{L}^i$$

TABLE 15.2. The number of non-isomorphic rank-r matroids on an n-set. (count w/o modding out isom.)

	n	0	1	2	3	4	5	6	7	8	9
r											
0		1	11	11	1	11	1	1	1	1	1
1			1	23	37	415	5 3	6 63	7	8	9
2				1	3 ๆ	736	13 7	23 83	37	58	87
3					1	415	137	38>531	.08	325	1275
4						1	531	23%p1	.08	940	190214
5							11	663	37	325	190214
6								1	7	58	1275
7						•33	• 13	•473	1	8	87
8							• (31	• 883		1	9
9								•473	1		1

<u>Rem</u> We'll later compare green#s to <u>h-vectors</u> of stellahedra. H°(Xstn)^{Gn} has dim 2ⁿ w/ betti seq. (ⁿ/₂), and is related to H° of a Hessenborg val.