Lecture 13

 $P+Q := \{ m \in M_R \mid m = p + q = \exists p \in P, q \in Q \}$ <u>Rop</u> Σ_{p+Q} is the coarsest common refinement of Σ_p and Σ_Q . $\frac{E.q.}{PtQ} = \int_{Q_1}^{Q_2} \frac{E}{P_1} \frac{e}{P_1} \frac{1}{P_1} \frac{1}{P_1} \frac{1}{P_1} \frac{1}{P_2} \frac{1}{P_1} \frac{1}{$ [U:V] [x:y:z] ñ PtQ= {xv-yu=o} P D⁺ (weak Minkowski summand) <u>Defn</u> Let Zp be a projective tan. A polytope Q is a <u>deformation</u> of P if $\Sigma_{Q} \preceq \Sigma_{p}$ (i.e. Σ_{Q} is a coarsening of Σ_{p}). P is indeformable if λP for $\lambda > 0$ are the only deformations of P. Def(P) is a cone. Exer Suppose P is a zonotope, i.e. a Minkowski sum of line segments Eli,..., lk}. Then $Q \in Def(P) \iff$ every edge of Q is l' to some li. Let P be a M-lattice polytope. Can define $X_{\Sigma P}$, and $X_{P \cap M}$ where $X_{P \cap M} := closure of image of <math>(T \longrightarrow (\mathbb{C}^*)^{P \cap M} \longrightarrow \mathbb{P}(\mathbb{C}^*)^{P \cap M})$ $t \mapsto (\chi^{m}(t))_{m}$

E.q. K_{em} P has IDP (is normal) if $(kP) \cap M = k(P \cap M)$ k > 0. P is smth if Z_p is $(\Longrightarrow IDP)$.

Let $X = X_{\Sigma p}$ for P smth polytope now. Assume also dim P = dim MR. Let $\mathbb{C}(X)$ be the (constant) sheaf of ratil fots on X, i.e. $\mathbb{C}(X) = \text{Frac CEMI}$. Recall: $A^{I}(X) = \frac{\text{Div}(X)}{(\text{div}(f))}$. Let $\Sigma(I)$ be the rays of $\Sigma = \Sigma_{p}$. Let $D_{p} = V(p)$.

Denote now
$$D = \sum_{p}^{r} a_{p} D_{p}$$
. Then $O_{X}(D) |_{U_{\sigma}} \simeq \mathbb{C}[S_{\sigma}] \cdot \mathcal{I}^{M_{\sigma}}$
Since $\mathcal{I}^{m} \in \mathbb{C}[S_{\sigma}] \Leftrightarrow \langle m, u_{p} \rangle \geq 0 \quad \forall p \leq \sigma$, where $\langle mr, u_{p} \rangle = -q_{p} \quad \forall p \geq \sigma$.
have $H^{\circ}(X, O_{X}(D)) \simeq \bigoplus_{m \in B} \mathbb{C} \cdot \mathcal{I}^{m}$ where $P_{D} = \{m \in M_{R} \mid \langle m, u_{p} \rangle \geq -q_{p} \quad \forall p\}$
 $\underline{N.B.} \quad P_{D+div(\mathcal{I}^{m})} = P_{D} - m$
(3) D is $b.p.f. \Leftrightarrow$ the piecewise linear fct $\mathcal{P}_{D} : N_{R} \rightarrow \mathbb{R}$ def. by
is "convex" $\mathcal{U}_{p} \mapsto -q_{p}$
 $\Leftrightarrow \mathcal{P}_{D}$ is the support fct $u \mapsto \min_{m \in B} \langle m, u_{p} \rangle \circ f \quad P_{D} \in Def(P)$

i.e. (lattice) deformations of
$$P \iff b.p.f.$$
 divisors on X
 $Q \longmapsto DQ = \sum_{\substack{p \ m \in Q}} -\min\{m, u_p\} Dp$
N.B. ample \iff strictly convex.
Nef(X)=Ample cone $\simeq Def(Q)/transl.$
(Demazure vanishing) $\gamma(X, O(D)) = h^{\circ}(X, O(D))$ when D b.p.f.
 $= \#(P_D \cap M)$
(The lattice volume, i.e. std splx has w]=1).