Divisors on matroids and their volumes

Christopher Eur

Department of Mathematics University of California, Berkeley

FPSAC 2019

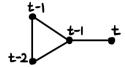
1. Graphs

G: a finite simple graph

chromatic polynomial of G:

 $\chi_G(t) := \#$ of ways to color vertices of G with at most t many colors with no adjacent vertices same color

Example



$$\chi_G(t) = t(t-1)(t-1)(t-2)$$

$$= t(t^3 - 4t^2 + 5t - 2)$$

Conjecture [Rota '71]

The unsigned coefficients of χ_G are unimodal ($\nearrow \searrow$).

2. Matroids

A matroid $M = (E, \mathcal{I})$:

- ▶ a finite set *E*, the **ground set**
- **a** a collection \mathcal{I} of subsets of E, the **indepedent subsets**

Examples

- realizable matroids: $E = \{v_0, \dots, v_n\}$ vectors, independent = linearly independent
- \triangleright graphical matroids: E = edges of a graph G, independent = no cycles

characteristic polynomial of M: $\chi_M(t)$

Conjecture [Rota '71, Heron '72, Welsh '74]

The unsigned coefficients of $\chi_M(t)$ are unimodal.

3. History

Resolution: graphs [Huh '12], realizable matroids [Huh-Katz '12]

KEY: coefficients of $\chi_M =$ intersection numbers of (nef) divisors

→ mixed volumes of convex bodies (Newton-Okounkov bodies)

Hodge theory of matroids [Adiprasito-Huh-Katz '18]: Chow ring / "cohomology ring" of a matroid

→ where are the convex bodies & their (mixed) volumes?

4. Goal today

Today: the volume polynomial of the Chow ring of a matroid

- (Comb) new invariants of matroids, "Hopf-y structures," volumes of generalized permutohedra
- ▶ (Alg Geom) degrees of certain varieties, E.g. $\overline{\mathcal{M}}_{0,n}$ and $\overline{\mathcal{L}}_n$
- ► (Trop Geom) first step in tropical Newton-Okounkov bodies

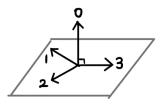
5. More matroids

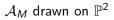
M a matroid of rank r: $E = \{v_0, \ldots, v_n\}$ spanning $V \simeq \mathbb{C}^r$.

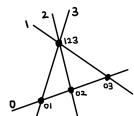
- ▶ For $S \subseteq E$, set $\operatorname{rk}_M(S) := \dim_{\mathbb{C}} \operatorname{span}(S)$.
- ▶ $F \subseteq E$ is a **flat** of M if $rk(F \cup \{x\}) > rk(F) \ \forall x \notin F$.
- ▶ hyperplane arrangement $A_M = \{H_i\}$ in $\mathbb{P}V^*$, where $H_i := \{f \in \mathbb{P}V^* \mid v_i(f) = 0\}$.

Example

M as 4 vectors in 3-space







6. Chow rings of matroids

- ▶ M a matroid of rank r = d + 1 with ground set E,
- ▶ $\overline{\mathcal{L}_M}$:= the set of nonempty proper flats of M.

Definition [Feichtner-Yuzvinsky '04, de Concini-Procesi '95]

Chow ring $A^{\bullet}(M)$: a graded \mathbb{R} -algebra $A^{\bullet}(M) = \bigoplus_{i=0}^d A^i(M)$

$$\mathcal{A}^{\bullet}(M) := \frac{\mathbb{R}[x_F : F \in \overline{\mathscr{L}_M}]}{\langle x_F x_{F'} \mid F, F' \text{ incomparable} \rangle + \langle \sum_{F \ni i} x_F - \sum_{G \ni j} x_G \mid i, j \in E \rangle}$$

Elements of $A^1(M)$ called **divisors** on M.

 $A^{\bullet}(M) =$ cohomology ring of the wonderful compactification X_M :

- **b** built via blow-ups from $\mathbb{P}V^*$; compactifies $\mathbb{P}V^*\setminus\bigcup\mathcal{A}_M$
- ▶ E.g. $\overline{\mathcal{M}}_{0,n}$, $\overline{\mathcal{L}}_n$ (moduli of stable rational curves with marked points)

7. Poincaré duality & the volume polynomial

Theorem [6.19, Adiprasito-Huh-Katz '18]

The ring $A^{\bullet}(M)$ satisfies Poincaré duality:

- 1. the degree map $\deg_M : A^d(M) \xrightarrow{\sim} \mathbb{R}$ (where $\deg_M(x_{F_1}x_{F_2}\cdots x_{F_d}) = 1$ for every maximal chain $F_1 \subsetneq \cdots \subsetneq F_d$ of nonempty proper flats)
- 2. non-degenerate pairings $A^i(M) \times A^{d-i}(M) \to A^d(M) \simeq \mathbb{R}$.

Macaulay inverse system:

Poincaré duality algebras \leftrightarrow volume polynomials

Definition

The volume polynomial $VP_M(\underline{t}) \in \mathbb{R}[t_F : F \in \overline{\mathscr{L}_M}]$ of M

$$VP_M(\underline{t}) = \deg_M \left(\sum_{F \in \overline{\mathscr{S}_M}} x_F t_F \right)^d$$

(where $\deg_M: A^d(M) \to \mathbb{R}$ is extended to $A^d[t_F$'s] $\to \mathbb{R}[t_F$'s]).

8. Formula for VP_M

- ▶ M be a matroid of rank r = d + 1 on a ground set E,
- ▶ $\emptyset = F_0 \subsetneq F_1 \subsetneq \cdots \subsetneq F_k \subsetneq F_{k+1} = E$ a chain of flats of M with ranks $r_i := \operatorname{rk} F_i$,
- lacksquare $d_1,\ldots,d_k\in\mathbb{Z}_{>0}$ such that $\sum_i d_i=d$, and $\widetilde{d}_i:=\sum_{j=1}^i d_j$

Theorem [E '18]

The coefficient of $t_{F_1}^{d_1} \cdots t_{F_k}^{d_k}$ in $VP_M(\underline{t})$ is

$$(-1)^{d-k} \binom{d}{d_1,\ldots,d_k} \prod_{i=1}^k \binom{d_i-1}{\widetilde{d}_i-r_i} \mu^{\widetilde{d}_i-r_i} (M|F_{i+1}/F_i),$$

 $\{\mu^i(M')\} = \text{unsigned coefficients of the reduced characteristic polynomial } \overline{\chi}_{M'}(t) = \mu^0(M')t^{\operatorname{rk} M'-1} - \mu^1(M')t^{\operatorname{rk} M'-2} + \dots + (-1)^{\operatorname{rk} M'-1}\mu^{\operatorname{rk} M'-1}(M')$ of a matroid M'.

9. First applications

- 1. $M = M(K_{n-1})$: $VP_M \to \text{embedding degrees of } \overline{\mathcal{M}}_{0,n}$ not a Mori dream space [Castravet-Tevelev '15]
- 2. $M = U_{n,n}$: $VP_M \rightarrow \text{volumes of generalized permutohedra}$
 - ▶ Relation to [Postnikov '09]? cf. [Backman-E.-Simpson '19]
- 3. The operation $M \mapsto VP_M \in \mathbb{R}[t_S \mid S \subseteq E]$ is valuative.
 - "The construction of the Chow ring of a matroid respects its type A structure." Hodge theory of matroids of arbitrary Lie type?

10. Shifted rank volume I

Nef divisors "=" submodular functions

Definition

The **shifted rank divisor** of *M*:

$$D_M := \sum_{F \in \overline{\mathscr{L}_M}} (\operatorname{rk}_M F) x_F$$

The **shifted rank volume** of *M*:

$$shRVol(M) := deg_M(D_M^d) = VP_M(t_F = rk_M(F)).$$

Remark

Unrelated to:

volume of the matroid polytope

11. Shifted rank volume II

▶ uniform matroid $U_{r,n}$: n general vectors in r-space.

Theorem [E. '18]

For M a realizable matroid of rank r = d + 1 on n elements,

$$shRVol(M) \le shRVol(U_{r,n}) = n^d$$
, with equality iff $M = U_{r,n}$.

Proof: Let $\pi: X_M \to \mathbb{P}^d$ be the wonderful compactification. Then $D_M = n\widetilde{H} - E$ where $\widetilde{H} = \pi^*(c_1(\mathscr{O}_{\mathbb{P}^d}(1)))$ the pullback of the hyperplane class, and E an effective divisor that is E = 0 iff $M = U_{r,n}$. Now, note $H^0(m(n\widetilde{H} - E)) \subset H^0(m(n\widetilde{H}))$ for any $m \in \mathbb{Z}_{\geq 0}$.

ightarrow counting sections of divisors in tropical setting?

Thanks

Thanks: Federico Ardila, Justin Chen, David Eisenbud, Alex Fink, June Huh, Vic Reiner, Bernd Sturmfels, Mengyuan Zhang.

Thank you for listening!