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Abstract

We give a brief account of the two proofs of McMullen’s g-conjecture characterizing the
f -vectors of simple (simplicial) polytopes. The sufficiency of the conditions outlined in the
g-conjecture was proved by Billera and Lee. The necessity part was first proved by Stanley
using Hodge theory on intersection cohomology of simplicial toric varieties. Later McMullen
developed Hodge theory on the polytope algebra which gives a proof of the necessity without
appealing to algebraic geometry.

1 Preliminaries

A polytope is a convex full of finitely many points in Rd. We will assume that the polytopes
are always full-dimensional in their ambient spaces. The (inner) normal fan ΣP of a polytope
P ⊂ Rd has cones whose interiors correspond to vectors ~v ∈ Rd with the same minx∈P 〈v, x〉.
A polytope is simple if its normal fan is simplicial (i.e. rays of any maximal cone are linearly
independent). Dually, a polytope is simplicial if all of its faces are simplicies. These are dual
notions via the polytope dual: Translating P ⊂ Rd if necessary, let P 3 0; then its dual is defined
as P ◦ := {y ∈ Rd | 〈y, P 〉 ≥ −1}.

The f-vector (f0(P ), . . . , fd(P )) of a (simple) polytope P ⊂ Rd is

fi := #(number of faces of dim = i),

where f−1 := 1. The f -vector of a fan Σ is likewise fi(Σ) := #(number of cones of codimension i),
so that the f -vector of P is the same as the f -vector of its normal fan.

Example 1.1. The 3-cube P is polytope-dual to the octahedron Q. Their f -vectors (including
f−1) are (1, 8, 12, 6, 1) and (1, 6, 12, 8, 1). Their f -vectors are mirrors of each other.

Remark 1.2. As our main problem concerns only the f -vectors of polytopes, we’ll more or less only
work with simple polytopes, as their f -vectors are in bijection with those of simplicial polytopes
via duality.

The h-vector (h0(P ), . . . , hd(P )) is obtained from the f -vector by setting f(t) :=
∑∞

i=0 fit
i and

h(t) :=

∞∑
i=0

hit
i = f(t− 1),

or equivalently hi :=
∑d

j=i(−1)j−i
(
j
i

)
fj . Often we set h−1 := 0. An important property of the

h-vector is the following.
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Theorem 1.3 (Dehn-Sommerville). The h-vector of a simple polytope is palindromic. That is, if
P ⊂ Rd is a simple polytope, then hi(P ) = hd−i(P ) for all i = 0, . . . , d.

Example 1.4. If P is the 3-cube again, then its h-polynomial is h(t) = (t − 1)3 + 6(t − 1)2 +
12(t − 1) + 8 = t3 + 3t2 + 3t + 1 = (t + 1)3. The h-vector is palindromic (1,3,3,1). Note that
Dehn-Sommerville relation need not hold for non-simple polytopes. For example, the h-polynomial
of the octahedron is h(t) = (t− 1)3 + 8(t− 1)2 + 12(t− 1) + 6 = t3 + 5t2 − t+ 1.

The g-vector is obtained from the h-vector by

g(t) = (1− t)h(t) = (1− t)f(t− 1),

or equivalently gi := hi − hi−1. A sequence (a1, . . . , am) of non-negative integers is a Macaulay
vector if the following is satisfied: if ai =

(
ni
i

)
+
(ni−1
i−1

)
+ · · ·+

(
nri
ri

)
then ai+1 ≤

(
ni+1
i+1

)
+
(ni−1+1

i

)
+

· · ·+
(nri+1
ri+1

)
. We can now state McMullen’s g-conjecture:

Theorem 1.5 (McMullen’s g-conjecture). A sequence of non-negative integers (f0, . . . , fd) is a
f -vector of a (d-dimensional) simple polytope if and only if:

1. hi = hd−i for all i = 0, . . . , bd/2c (Dehn-Sommerville),

2. gi ≥ 0 for all i = 0, . . . , bd/2c (lower bound conjecture), and

3. (g1, . . . , gbd/2c) is a Macaulay vector.

The sufficiency part of the g-conjecture was solved by Billera and Lee ([BL81]). A vague sketch
is: f -vector satisfying the above gives a lex-order-ideal, which defines a simplicial complex with
the same f -vector, which then can be used to consider some shellable union of facets of a cyclic
polytope whose boundary structure reflects the simplicial complex, and then by selecting a general
enough point to make a cone then take hyperplane intersection to arrive at the polytope.

In the next two sections we discuss solving the necessity part. While all known proofs rely on
some sort of Hodge structure, there are two different approaches to developing the Hodge theory:
first the geometric approach by Stanley using toric geometry, and second a purely combinatorial
one given by McMullen via polytope algebras.

2 Through toric geometry

Here we follow exposition given in [Ful93] for Stanley’s proof of the necessity of the conditions in
the g-conjecture. All toric varieties are assumed to be over the complex numbers C.

Two harmless assumptions

First, we may assume that the polytopes are lattice polytopes (i.e. the vertices in Zd). Two
polytopes are combinatorially equivalent if they have the same face poset structure. A rational
realization of a polytope P ⊂ Rd is a polytope P ′ that is combinatorially equivalent to P and
has vertices in Qd. Caution: Not every polytope has a rational realization for a nice family of
examples and related rationality issues see [Zie08]. However, simple or simplicial polytopes always
do. For simplicial polytope, just wiggle the vertices a bit to make them rational; as the faces are
all simplices the face poset does not change. The same goes for simple polytopes, except now we
(dually) wiggle the facet hyperplane a bit to be rational. Thus we assume that our simple polytopes
are lattice polytopes.
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Second, we may further assume that ΣP is smooth. Let P ⊂ Rd be a simple lattice polytope.
Then the toric variety XΣP

is an orbifold (locally a quotient of a smooth manifold by a finite
group). For orbifolds, the (co)homologies with rational coefficients coincide with the intersection
(co)homologies, on which the Kähler package holds for projective varieties. Hence, throughout this
section we assume that ΣP is smooth, with the understanding that for simplicial cases one uses the
same arguments by replacing “cohomology” with “intersection cohomology.”

h-vector is the Betti numbers

For any complex algebraic variety X of dimension d, one can define the virtual Poincaré poly-
nomial PX(t) characterized by

1. PX(t) =
∑2d

i=0 h
i(X)ti for X complete and smooth, where hi(X) := dimQH

i(X;Z)⊗Q,

2. If Y ⊂ X is a closed subvariety, then PX(t) = PY (t) + PX\Y (t).

In other words, P(·)(t) is a map from the Grothendieck ring of varieties K(VarC)→ Z[t].
From (2), one can deduce from the torus orbit stratification of XΣ that PXΣ

(t) = fc(Σ)P(C∗)c(t),
and from (1) and Kunnuth formula that P(C∗)c(t) = (t2 − 1)c (note C∗ = P1

C \ {0,∞} so that
PC∗(t) = t2 − 1). Putting these together, we have that for ΣP smooth, we have

PXΣ
(t) =

d∑
i=0

fi(P )(t2 − 1)i = fP (t2 − 1).

In other words, we have hi(P ) = h2i(X). By Poincaré duality on complex manifolds, we thus
immediately obtain the Dehn-Sommerville relation hi(P ) = hd−i(P ). Moreover, hard Lefschetz
property implies that hj(X) − hi(X) ≥ 0 for 0 ≤ i ≤ j ≤ d, and hence hi(P ) − hi−1(P ) ≥ 0 for
i ≤ bd/2c. Hence, we have proven the necessity of conditions (1) and (2).

Lastly, let A = A•(XP )Q = H2•(X;Q) be the Chow ring, and ` ∈ A1 an ample class. Then
R• := A/` is a graded Q-algebra generated in degree 1, where dimRi = dimAi − dimAi−1 =
hi − hi−1 = gi (again by hard Lefschetz). Macaulay described all the dimensions of Ri for such
rings, which is what is described in condition (3).

3 McMullen’s polytope algebra

Here we follow [McM93] and [Huh16] for McMullen’s proof of the g-conjecture via the polytope
algebra that does not appeal to hard Lefschetz theorem of intersection cohomologies. The broad
approach is similar in that McMullen develops an appropriate Hodge theory on a graded R-algebra
whose Hilbert function is the h-vector.

The polytope algebra

Let V = Rd be fixed throughout this section, and let P = P(V ) be the set of all polytopes in
V . A map φ : P → A where A is an abelian group is valuative if for any P,Q ∈ P such that
P ∪Q ∈P one has

φ(P ) + φ(Q) = φ(P ∪Q) + φ(P ∩Q).

Moreover, a valuation φ is translation invariant if φ(Q) = φ(Q + t) for any t ∈ V . The polytope
algebra is defined as a universal object with respect to translation invariant valuations as follows.
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Definition 3.1. Given a map φ : P → A, denote also by φ : Z⊕P → A the map φ induces. The
polytope algebra Π is a quotient π : Z⊕P � Π defined by the universal property that for any
translation invariant valuative map φ : P → A there exists a unique map φ̃ : Π → A making the
following diagram commute.

Z⊕P φ //

π
����

A

Π
∃!φ̃

==

The condition that P ∪ Q be also convex can be slightly cumbersome at time, but letting
U(P) = {finite unions of elements of P}, we have a useful fact ([McM89, Lemma 4]) that valuative
maps on P extend uniquely to U(P). The proof relies on another useful fact ([McM89, Lemma
3]) that φ : P → A is a valuation iff it induces a homomorphism on X(P) (algebra generated by
indicator functions χP ). One consequence of the these is that one can work with P1 ∪ · · · ∪ Pn via
inclusion-exclusion principle, and in particular, as any polytope has a triangulation, we have that
Π is generated by classes of simplices.

Π has a multiplication structure via Minkowski sum, i.e. [P1] · [P2] := [P1 + P2], which makes
Π into a commutative ring with [∅] = 0 and [pt] = 1. Moreover, for λ ≥ 0 we have a ring
homomorphism ∆(λ) : [P ] 7→ [λP ] (dilation). Caution: λ[P ] 6= [λP ]. The first main theorem on
the structure of Π is the follwoing.

Theorem 3.2. [McM89, Theorem 1] Π is a almost graded R-algebra in the following sense. There
is a decomposition (as Z-modules) Π =

⊕d
r=0 Ξr such that

1. Ξ0 ' Z and Ξr for r > 0 has a structure of R-vector space, such that

2. Ξi ·Ξj ⊂ Ξi+j for 0 ≤ i, j ≤ d (Ξr>d = 0) and (λx)y = λ(xy) = x(λy) for x, y ∈
⊕

r>0 Ξr, and

3. ∆(λ)x = λrx for x ∈ Ξr.

First, one notes that there is a decomposition Π = Ξ0 ⊕ Z1, where Ξ0 = Z{[pt]}, and the
projection map Π→ Ξ0 is ∆(0), which is also equal to taking the (topological) Euler characteristic
χ. It follows from the proof of the decomposition ([McM89, Lemma 8]) that the kernel Z1 of ∆(0)
(equiv. χ) is generated by [P ]−1 (where P ∈P\{∅}). Moreover, one can show that Z1 is nilpotent,
torsion-free, divisible ([McM89, Lemma 13, 16, 17]). Hence, for P ∈ P \ {∅} one can define the
logarithm of [P ], denoted log[P ] or p, satisfying the usual rule log([P1]·[P2]) = log[P1]+log[P2]. The
component Ξr (r > 0) is then submodule of Π generated by pr for P ∈P \ {∅} (in fact any r-fold
product of logarithms). Lastly, we have Ξd ' R by the volume form, so that Vol(P ) = Vol(pd) or
more generally MV (P1, . . . , Pd) = Vol(p1p2 · · · pd).

Given a (simple) polytope P ⊂ Rd, a Hodge theory is then developed on Π(P ), which is a graded
subring of Π generated by Minkowski summands of P . An alternate formulation of Π(P ) is that it
is generated by q where Q is strongly (combinatorially) equivalent to P (in the sense that P and
Q are Minkowski summands of each other). The polytopes equivalent to P , denoted K(P ), form a
convex cone with non-empty interior in the sense that Q1, Q2 ∈ K(P ) =⇒ λ1Q1 + λ2Q2 ∈ K(P )
(equiv. {q}Q equiv to P form a convex cone in Π(P )). In this formulation, Ξr(P ) is generated by
r-fold products of logarithms of polytopes equivalent to Q. We tensor Ξ0(P ) ' Z with R whenever
necessary (i.e. when treating Π(P ) as a finite graded R-algebra).

The first main result is that Π(P ) is the “cohomology ring” of P in the sense that Ξr(P ) = hr(P )
([McM93, Theorem 6.1]) satisfying Poincaré duality ([McM93, Theorem 5.2]). Moreover, Π(P )
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satisfies a hard Lefschetz property (LD) where an element of K(P ) takes the role of the ample class
in classical Hodge theory ([McM93, Theorem 7.3]). The Hodge-Riemann(-Minkowski) relation
(HRM) ([McM93, Theorem 8.2]) is not needed for the g-conjecture, but it is an ingredient of the
proof in that HRM(d− 1) implies LD(d) ([McM93, Lemma 8.3]). In summary we have:

Theorem 3.3. Let P ⊂ Rd be a simple polytope, and p = log[P ] ∈ Π(P ). Then dimR Ξr(P ) =
hr(P ), and

P. Ξr(P )× Ξd−r(P )→ Ξd(P )
vol' R is a perfect pairing,

LD. pd−2r : Ξr(P )
∼→ Ξd−r(P ) is an isomorphism, and

HR. Ξr(P ) × Ξr(P ) → R via (x, y) 7→ (−1)r vol(xpd−2ry) is positive definite on the primitive
classes ker(pd−2r+1 : Ξr(P )→ Ξd−r+1(P )).

Remark 3.4. [McM93, Theorem 14.1] The ring Π(P ) morally is really a Chow ring in the sense
that Π(P ) ' R(ΣP ) where R(ΣP ) is the usual face ring of the simplicial polytope P ◦. That is,
indexing the primitive rays of ΣP as {u1, . . . , un}, we have

R(ΣP ) = R[x1, . . . , xn]/ISR + J

where ISR = 〈xS | S ⊂ [n] not a cone in Σ〉 and J = 〈
∑n

i=0〈ek · ui〉xi | k = 1, . . . , d〉.
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