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Abstract. The stable reduction theorem implies that Mg, moduli space of curves of genus

g, has a compactification to Mg, the Deligne-Mumford stable compactification. The space

Mg has a stratification where each stratum corresponds to a combinatorial type of the stable
reduction. The combinatorial data of this stratification can be encoded as the moduli of
tropical curves. Here we survey a relationship between these tropical curves associated to
stable reductions and tropicalizations of curves.
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Notation. Throughout this paper, let k denote an algebraically closed field. For a scheme
X, we denote by X(A) := MorSch(SpecA,X) the A-valued points of X. A curve over k is
a pure 1-dimensional reduced, separated, and finite type k-scheme.

1. The moduli space Mg

1.1. What is a moduli space?

Informally, a moduli space is a geometric space whose points correspond to algebro-
geometric objects of specified kind. For example, the space PnC is a “moduli space of lines
through the origin in (n + 1)-space over C,” since the classical points of PnC corresponds to
lines in Cn+1 through the origin.

To consider the notion of moduli space on a more scheme-theoretic and functorial frame-
work, we consider the PnZ as an example. The space PnZ is a “moduli space of lines through
the origin in (n + 1)-space” in the sense that for any field k, the k-valued points PnZ(k) are
the classical points of Pn

k
. Indeed, this functor of points approach allows one to replace the

base scheme Speck by any scheme B. For example, if B is a k-scheme, then a point of PnZ(B)
1
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is a map B → PnZ so that the closed points B(k) parameterize a family of lines through the
origin of kn+1:

Speck

Id

$$

//

##%%

B

��
Pn
k

//

��

PnZ

Speck

We thus arrive at the following definition:

Definition 1.1.1. A moduli problem consists of two data:

(1) What it means to have a family of desired objects over a base scheme B, giving rise
to a functor F : Sch → Sets where F(B) is the set of all families of the desired kind
of objects over a base scheme B, and

(2) a notion ∼ of when two elements of F(B) are to be considered equivalent

from which we obtain a functor M : Sch→ Sets by M(·) := F(·)/ ∼.

Definition 1.1.2. A scheme M is a fine moduli space for a moduli problem if it represents
the functor M(·) by M(·) := MorSch(·,M). As a weaker notion, M is a coarse moduli
space if M(·) admits a natural transformation M(·) → M(·) for which M(Speck) → M(k)
is a bijection, and is the universal object with this property.

Example 1.1.3. The space PnZ is the coarse moduli space of lines through the origin in
(n + 1)-space. To be a fine moduli space, one need generalize appropriate the notion of
“lines through the origin.”

Remark 1.1.4. In what follows, we define the moduli problem and the moduli space M over
C to make our discussions easier (and due to the author’s limited knowledge). However, just
as PnC could be replaced with PnZ to provide full generality, the reader may regard M as a
coarse moduli space as defined above to a suitable generality. (The author welcomes any
comments and/or criticisms regarding this informality).

1.2. The spaces Mg,Mg and (semi)stable curves.

Definition/Theorem 1.2.1. The set of smooth, complete, and connected curve of genus
g ≥ 2 over C, denoted Mg, is a quasi-projective C-variety of dimension 3g − 3.

Notation. We will assume that the genus g is always ≥ 2.

That Mg is only quasi-projective calls for a compactification. However, naively taking
its closure in the ambient projective space would not be correct, since we would like the
compactification Mg itself to be a moduli space. One desire is to have the boundary points

Mg \Mg correspond to complete and connected (but necessarily singular) curves of genus g.
Deligne and Mumford showed that the suitable singular curves at the boundary are stable
curves, defined as follows:

Definition 1.2.2. A stable curve C is a complete and connected curve that has only nodes
as singularities and has a finite automorphism group.
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A smooth curve of genus ≥ 2 is indeed stable. A singular stable curve C can be thought
of as finitely many curves (irreducible components) with only nodes as singularities con-
nected together through normal crossings. With this view, since dim Aut(P1) = 3 whereas
dim Aut(C) ≤ 1 for g(C) ≥ 1 (in fact 0 for g(C) ≥ 2), we get the following equivalent
definition of stable curves:

Proposition 1.2.3. A genus g ≥ 2 curve C with only nodal singularities is stable iff each
of its rational components intersects other components at least 3 times.

We now come to the main theorems of Deligne and Mumford on the stable compactification
of mooduli space of curves:

Theorem 1.2.4 (Deligne-Mumford compactification). The space of stable curves over C of
genus g ≥ 2, denoted Mg, is a projective variety, containing Mg as an open subset.

Theorem 1.2.5 (Stable reduction). Let B be a smooth curve, and 0 a closed point of B,
and B∗ := B \ {0}. Let X → B∗ be a flat family of stable curves of genus g ≥ 2. Then
there exists a branched cover B′ → B totally ramified over 0 and a family X ′ → B′ of stable
curves extending the fiber product X ×B∗ B′. In diagram form:

X ′

∃ %%

// X ×B∗ B′

��

// X

��
B′

∃ // B

Morally, the stable reduction theorem means that given a 1-dimensional parameter of
stable curves that limits to a non-stable singular curve, after a small base change the limit
curve can be made to a stable curve. The process of finding X ′ → B′ from X → B is called
stable reduction.

Remark 1.2.6. In the Theorem 1.2.5, the space X ′ may not be smooth. One way to remedy
this is to weaken the condition on the allowable curves: a complete and connected curve C
of genus ≥ 2 is semistable if each of its rational components meets other components at
least 2 times (instead of 3 times). The statement of Theorem 1.2.5 holds verbatim when the
word “stable” is replaced with “semistable.” The resulting X ′ (as a semistable reduction) is
now guaranteed smooth.

1.3. Stratification of Mg and dual graphs.

Definition 1.3.1. A space X has a stratification {Ui}i∈I if X =
⋃
i Ui, the subsets Ui’s

are locally closed and disjoint, and I is a poset such that Ui =
⋃
j≤i Uj.

Example 1.3.2. The projective space Pn
k
, Grassmannians Grk(m,n), and more generally

flag varieties have an affine stratification (stratification whose Ui’s are ' Ani).

We now describe the stratification of Mg for the case g = 2 in an informal manner by
appealing to Riemann surface pictures.

A smooth, complete, connected curve over C is a (compact) Riemann surface. Thus, an
element of M2 is a Riemann surface of genus 2, whose real picture is:
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We then consider a 1-dimensional family of smooth genus 2 curves limiting to a singular
curve as follows: take a loop around an handle on the Riemann surface, so that the 1-
dimensional parameter is the size of the loop, and as the loop shrinks down to size zero,
the family limits to a singular Riemann surface. The figure below shows two such families,
limiting to two different singular Riemann surfaces when the loops are cinched down to a
point:

We can continue this process and obtain the following diagram of Riemann surfaces, with
a corresponding diagram of complex curves (the first two of the figure below)

Figure 1. Illustrations of the stratification of M2

It is a fact that M2 (and Mg in general) has a stratification as drawn in the diagrams

above: First, M2 has a (dense) open cell M2 whose points correspond to smooth curves of
genus 2 (the top figure in the diagram), and its complement M2 \ M2 consists of points
corresponding to the singular curves (union of all the figures below). The boundary M2 \M2

itself has two open cells, corresponding to the stable curves that falls into one of two types
of singular curves in the second row of the diagram. And the pattern continues.

The combinatorial types of stable curves can be encoded as follows:

Definition 1.3.3. Let C be a stable curve over k. The dual graph of C is a finite graph
with vertex weights ΓC whose vertices are irreducible components of C with weights the
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genus of the component, and an edge between two vertices for each intersection of the two
corresponding components.

Example 1.3.4. The dual graph diagram for M2 is the third figure in Figure 1. We discuss
the combinatorics of these dual graphs in the next section.

2. Mg and the moduli space Mg
trop

2.1. Moduli of tropical curves.

Definition 2.1.1. A tropical curve Γ is a data of a graph G = (V,E) with vertex weights
w : V (G)→ Z and edge lengths ` : V (E)→ R>0. Denoting by ws(G) the sum of the weights
of the vertices, define genus of Γ as g(Γ) = |E| − |V |+ 1 + ws(G).

Remark 2.1.2. Usually, an edge is allowed to have ∞ length if it is incident to a univalent
vertex. We will not worry about this in this paper.

Given a graph G with vertex weights, we can consider a family M
trop
G of tropical curves

whose underlying graph is G by varying the lengths given to the edges.

Definition 2.1.3. Let G = (V,E) be a graph with vertex weights. The space M
trop
G called

moduli of tropical curves supported over G is defined as M
trop
G := R|E(G)|

>0 /Aut(G).

For example, for the dumbbell graph below, denoting the three edge lengths as a, b, c (where
b is the middle edge), we have that Mtrop

G is {(a, b, c) ∈ R3
>0}/ ∼ where (a, b, c) ∼ (a′, b′, c′) if

a = c′, a′ = c.

Furthermore, in the example above, as one of the edge lengths approaches zero, we get a
tropical curve supported over one of the two graphs below:

In other words, the boundary of the closure M
trop
G , whatever it is, should correspond to

tropical curves supported over graphs that are contractions of the graph G. The rule for
contracting an edge of graph G to obtain a new graph G′ is as follows: (i) If contracting a
loop, the vertex that the loop contracts to gains +1 for its weight, (ii) If contracting an edge
(non-loop), erase the edge and identify the two endpoints, with the new vertex weight being
the sum of the two previous ones. Note that contraction preserves the genus.

Definition/Theorem 2.1.4. The tropical moduli space Mg
trop

is the moduli space of

tropical curves of genus g. It is constructed by gluing together the spaces MG
trop

where G’s
are the dual graphs arising from stable curves of genus g.

Example 2.1.5. The third column of Figure 1 can now be interpreted as giving the data of

M2
trop

. The figure on the right is a depiction of M2
trop

as a geometric space. For a picture

of M3
trop

, see [Cha11].
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Figure 2. The space M2
trop

which is supported over the dual graphs of Mg

Theorem 2.1.4 suggests that there is a connection between Mg and Mg
trop

. The stratifica-
tion for both is given by the data of poset of graphs (where G ≥ G′ if G′ is given by a edge
contraction of G). Calling these set of graphs {Γ}, we have a diagram:

Mg

  

??

Mg
trop

||
{Γ}

To explore the top connection, we need introduce the notion of Berkovich analyfication,

which we do in the next subsection. We return to the relationship between Mg and Mg
trop

the subsection after.

2.2. Berkovich analyfication and tropicalization.

We first give a cursory treatment of Berkovich analyfication, just enough to provide an
idea of what it is. The main reference is [Bak07] (this is a topic the author hopes to study
more and expand upon in the future).

Notation. Throughout this subsection, let K be a field with valuation ν : K× → R.

Definition 2.2.1. A (multiplicative) seminorm on a ring R is a map ‖ · ‖ : R → R≥0

such that (i) ‖ab‖ = ‖a‖‖b‖, (ii) ‖a+ b‖ ≤ ‖a‖+ ‖b‖, and (iii) ‖0R‖ = 0, ‖1R‖ = 1.

Here (for now), we only define what Berkovich analyfication is for an affine scheme.

Definition 2.2.2. Let K be a valued field with the induced norm | · |. If A is a K-algebra
and X = SpecA, define Xan, the Berkovich analyfication of X, as

Xan := {‖ · ‖x : a seminorm on A extending the norm on K}

with the weakest topology such that for any f ∈ A, the map f : ‖ · ‖x 7→ ‖f‖x is continuous.



TROPICALIZATION AND STABLE REDUCTION OF CURVES 7

Remark 2.2.3. Xan is locally compact and Hausdorff. Berkovich’s theorem on types of points
for (A1

K)an allows one to visualize it as and infinite tree, whose branches also has a dense set
of points from which infinite trees branch out.

Note 2.2.4. TheK-valued pointsX(K) naturally embed intoXan as follows: For x ∈ X(K),
define ‖ · ‖x : f 7→ |f(x)| ∀f ∈ A.

We now describe Payne’s result on tropicalization and analyfication following .

Recall that given X, an affine subvariety over K of a m-torus Tm(K), its tropicalization
trop(X) = cl{(ν(y1), ν(y2), . . . , ν(yn)) ∈ Rm : (y1, . . . , yn) ∈ X(K)} (where the closure is
the usual Euclidean closure). Extending the valuation on K× to ν(0) := ∞, and defining
R := R ∪ {∞} (with the topology homeomorphic to the interval (0, 1]), we extend this
tropicalization to trop(X) ⊂ Rm where X is now an affine K-variety in Am

K . For an ab-
stract affine K-variety X with coordinate ring K[X], the tropicalization trop(X) depends
on the embedding ι : X ↪→ Amι . So, denote by trop(X, ι) the tropicalization of X given an
embedding ι.

For each ι, there is a natural map πι : Xan → trop(X, ι) as follows. Let y1, . . . , ym ∈ K[X]
be the coordinate functions of the embedding. Then define the map πι : Xan → Rm by
‖ · ‖x 7→ (− log ‖y1‖x, . . . ,− log ‖ym‖x). Indeed, if x ∈ X(K), then − log ‖yi‖x = − log |xi| =
− log(exp(−ν(xi))) = ν(xi), so that the Euclidean closure of Im(πι) is trop(X, ι).

Theorem 2.2.5. [Pay09] Let X be an affine K-variety. The map πι : Xan � trop(X, ι)

is surjective, and moreover, the induced map lim←−ι πι : Xan ∼→ lim←−ι trop(X, ι) is a homeo-
morphism. Moreover, this result can be extended to the case where X is a quasi-projective
K-variety.

In the next subsection, we finally come to the discussion of what these tools have to do
with stable reduction of curves.

2.3. Connecting Mg to Mg
trop

.

Mg
an

, the Berkovich analyfication of MG, provides the link between Mg and Mg
trop

. We
now describe the two new arrows in the diagram below:

Mg
an

�� ��

Mg

!!

Mg
trop

{{
{Γ}

Note 2.3.1 (Left arrow). Fact: Points of Mg
an

correspond to a valued field extension K ⊃ C
(extending trivial valuation on C) and a map SpecK → Mg

an
. As a point of Mg is a field

extension K ⊃ C and a map SpecK →Mg, we indeed get a map Mg
an →Mg.
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Note 2.3.2 (Right arrow). Theorem 1.2.4 in particular implies that Mg is proper over C.
Now, suppose K ⊃ C is a valued field extension (extending the trivial valuation on C), so
that its valuation ring R contains C. Suppose we have a smooth curve of genus g over K, i.e.
a K-valued point of Mg. We have a diagram below, and by valuative criterion of properness,

there exists a unique map SpecR→Mg

SpecK //

��

Mg

��
SpecR

∃!
99

// SpecC
in summary, given a smooth K-curve X where K ⊃ C is a valued field extension, there
exists a (unique) scheme X over R, called the stable model of X, such that the fiber over
the generic point is X and the fiber over the closed point is a stable curve Xk over k (the
residue field of R).

Thus, given a point on Mg
an

, i.e. a curve X over K ⊃ C a valued field extension, take the
stable model X and consider the dual graph ΓXk of Xk. The edge lengths of ΓXk are given
as follows: a locally around a normal crossing in Xk, on X (before specializing) the local
equation is xy = f for f ∈ SpecR. Now, the edge length of ΓXk corresponding to the normal
crossing is ν(f).

2.4. Computing the (semi)stable model.

While there is an algorithm for carrying out the stable reduction (outlined in [HM98,
§3.C]), it involves several steps of blowing-up, normalization, and blowing-down that makes
it computationally rather difficult. To the author’s knowledge, it is not even easy to tell
what combinatorial type the dual curve of the resulting stable curve is until the lengthy
algorithm has been carried out till the end.

We survey here how tropical geometry can pave a way to a computationally efficient way
to compute the stable reduction. The main fact is as follows:

Theorem 2.4.1. [Bak07, §5] Let X be a smooth curve over a valued field K, and let X be a
stable model. Then there exists a deformation retract r : Xan → ΓXk where ΓXk is the dual
graph of the stable curve Xk. The space ΓXk as a subspace of Xan is called the Berkovich
skeleton of X.

Remark 2.4.2. The above theorem is in fact stated for semistable models of X in [Bak07,
§5.1]. It is the author’s impression that it also holds for stable models. Moreover, there
seems to be several ways to approach what “Berkovich skeleton” is (see [BPR11, §1.2]), and
the notion of Berkovich skeleton is a complex one that the author does not understand well.
The author apologizes and welcomes criticisms for any errors introduced here.

Given the theorem above, and recalling the relationship between analyfication and tropi-
calization, we have the following diagram:

Am trop // trop(X, ι)

X
� ?

ι

OO

// Xan

πι

OOOO

// ΓXk

πι|ΓXk
nice?hh
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We conclude with a discussion of when the map πι|ΓXk
is “nice” in the sense that trop(X, ι)

faithfully represents the dual graph ΓXk .

Example 2.4.3. Consider a plane curve X over Cp (for p ≥ 5) given by

f(x, y, z) = x3y − x2y2 − 2xy3 − 3x2yz + 2xyz2 − pz4 = 0

One can check by Jacobian condition that X is a smooth curve over Cp. Moreover, all the
coefficients have non-negative valuation, and hence we may consider X, a scheme over the
valuation ring of Cp given by the same polynomial. X is in fact a stable model since XFp is

given by an equation f(x, y, z) = xy(x + y − z)(x − 2y − 2z), which is four lines in general
position. Hence, the dual graph Γ is the K4-graph, but the map to trop(X) destroys some
of this information:

On the other hand, a curve over C{{t}} defined by f = t4(x4 + y4 + z4) + t2(x3y + x3z +
xy3 + y3z+xz3 + yz3) + t(x2y2 +x2z2 + y2z2) +xyz(x+ y+ z) has the same stable reduction
type xyz(x+ y + z), but trop(V (f)) has K4 as its bounded part (see [BPR16, 5.29])

The crux of the problem is to find the right embedding ι such that the bounded part of
trop(X, ι) is homeomorphic (even better: isometric) to ΓXk . Here is one criteria for testing
whether trop(X, ι) is a faithful representation of ΓXk :

Theorem 2.4.4. [BPR16, 5.28] Suppose X is a smooth, complete, projective K-curve of
genus g(X) ≥ 1 and ΓXk its Berkovich skeleton (dual graph of the stable reduction).

(1) If X is a plane curve given by f ∈ K[x, y] whose Newton complex is a unimodular
triangulation, then Xk is a totally degenerate reduction and trop : ΓXk → trop(X) is
an isometry onto its image.

(2) More generally, if all vertices of trop(X) are trivalent, all edges of trop(X) have
multiplicity 1, the graph ΓXk has no vertex of valence 1, and dimH1(ΓXk ,R) =
dimH1(trop(X),R), then trop : ΓXk → trop(X) is an isometry onto its image.

Thus, we have trop(X) as a faithful representation of ΓXk , we can ask for an embedding
ι : X ↪→ Pn such that the Newton complex has a unimodular triangulation.
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