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ABSTRACT. We prove a log-concavity statement concerning the number of colored transversals. Along
the way, we will encounter several important players in algebraic combinatorics, including mixed
volumes, polymatroids, Chow rings, permutohedral/stellahedral fans, and more. These notes were
prepared for Summer School in Algebraic Combinatorics at MPI Leipzig 2024.

1. INTRODUCTION

Let [n] = {1, . . . , n} for an integer n ≥ 1. Let E be a finite set with a partition E = E1 t · · · t En,
that is, let π : E � [n] be a surjective map and denote Ei := π−1(i).

Definition 1.1. A subset S ⊆ E is π-colored if |S∩Ei| ≤ 1 for all i ∈ [n]. A π-transversal is a maximal
π-colored subset, i.e. a subset T ⊆ E such that |T ∩Ei| = 1 for all i ∈ [n]. Denote by 2π the set of all
π-colored subsets.

The primary combinatorial quantity we study is the following.

Definition 1.2. For a sequence S = (S1, . . . , Sm) of π-colored subsets of E, and for a sequence
d = (d1, . . . , dm) ∈ Zm≥0 such that |d| := d1 + · · ·+ dm = n, define the π-capacity of (S,d) to be

C(S,d) := |{T ⊆ E a π-transversal | ∃ϕ : T → [m] with ϕ−1(j) ⊆ Sj and |ϕ−1(j)| = dj ∀j ∈ [m]}|.

Caution. Note that C(S,d) counts the number of π-transversals T admitting such a map ϕ, not the
number of such maps. Given T , there can be several different ϕ satisfying the imposed condition.

Remark 1.3 (Flavor text). Here is a “real life scenario” behind these definitions. Suppose we have
an international meeting of n counties, each country sending delegates Ei. The delegates belong
to various committees Sj where each country is represented at most once. Let’s call a panel to be
a subset of delegates consisting of exactly one delegates from each country (i.e. a π-transversal).
Given a sequence (d1, . . . , dm) of nonnegative integers, one for each committee Sj , how many
panels can be created by selecting dj members from each committee Sj?

Example 1.4. Two examples with n = 3 and m = 3 are depicted below.

For d ∈ Zm≥0, write
xd

d!
:=

xd11 · · ·xdmm
d1! · · · dm!

. The following is our main theorem about π-capacities.

Theorem A. For π and S, the π-capacity polynomial f ∈ R[x1, . . . , xm] defined by

f(x) =
∑

d∈Zm≥0

|d|=n

C(S,d)
xd

d!

is Lorentzian in the sense of [BH20].
1
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FIGURE 1. Note that in the second example, for d = (1, 2, 0), the only transversal
possible is {1a, 2b, 3b}, although it can be created in two different ways.

We defer the definition of Lorentzian polynomials to Section 3, and only mention here a log-
concavity behavior that Lorentzian polynomials enjoy. A nonnegative sequence (a0, a1, . . . , a`) is
log-concave if a2

i ≥ ai−1ai+1 for all 1 ≤ i ≤ ` − 1, and it has no internal zeros if ai 6= 0 and aj 6= 0

implies ak 6= 0 for all i < k < j.

Proposition 1.5. [BH20, Example 2.26] The coefficients cd of a Lorentzian polynomial g(x) =∑
d cd

xd

d! , when read along any ei − ej direction, form a log-concave sequence with no internal
zeros.
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The ideas and the methods behind the proof of the main theorem comprise of interactions be-
tween various topics of interest in algebraic combinatorics—polytopes, poly- and multi- matroids,
tropical Hodge theory, toric varieties, and moduli spaces of pointed rational curves.

Remark 1.6. A sketch of the proof of the main theorem is as follows. Consider (P1)n, where the i-th
copy of P1 has |Ei|many distinct markings. These markings make a “grid pattern” on (P1)n. Let X
be the sequential blow-up of all the strata in the grid pattern starting with the lowest dimensional
ones. Alternatively, for each π-colored subset S, one has a rational map (P1)n 99K P(CS ⊕ C), and
X resolves the indeterminacy. Let hS be the pullback to X of the hyperplane class in P(CS ⊕ C).
Then, one has that ∫

X

hS1 · · ·hSn = C((S1, . . . , Sn), (1, . . . , 1)).

This is the hardest step (with no known “algebro-geometric proof”), but given this, the rest follows
from the general theory of Lorentzian polynomials — namely, that intersection numbers of base-
point-free divisors give rise to Lorentzian polynomials [BH20, Theorem 4.6].

2. SIMPLICES, MATCHINGS, AND POLYMATROIDS

Let ei denote the i-th standard basis vector of Rn. For a subset S ⊆ [n], denote eS :=
∑
i∈S ei,

and for x = (x1, . . . , xn) ∈ Rn, denote xS :=
∑
i∈S xi. We begin with some classical facts about

volumes of polytopes in Rn. Recall that the Minkowski sum of two polytopes P and Q in Rn is the
pointwise sum, i.e.

P +Q = {x+ y ∈ Rn : x ∈ P and y ∈ Q}.
Let Volume(P ) denote the volume of P , normalized so that the unit cube [0, 1]n gets volume n!. (i.e.
The standard n-dimensional simplex in Rn gets volume 1).

Fact 2.1 (Minkowski). For polytopes P1, . . . , Pm in Rn, the function Volume(x1P1 + · · ·+ xmPm) is
a degree n homogeneous polynomial in x1, . . . , xm.

Definition 2.2. For polytopes P1, . . . , Pn in Rn, define their mixed volume to be

MV (P1, . . . , Pn) :=
1

n!
· (the coefficient of x1 · · ·xn in Volume(x1P1 + · · ·+ xnPn)).

Exercise 2.3 (Sanity check). Let P = conv(0, e1, e2) and Q = conv(0,−e1, e2) in R2. Compute
Volume(xP + yQ), and verify that MV (P,Q) = 2.

Exercise 2.4. Write P d for the sequence of P repeated d times. For d ∈ Zm≥0 such that |d| = n, verify
thatMV (P1

d1 , . . . , Pm
dm) = the coefficient of

(
n

d1,...,dm

)
xd11 · · ·xdmm in the polynomial Volume(x1P1+

· · ·+ xmPm). In particular, conclude that MV (Pn) = Volume(P ).

We now consider mixed volumes of standard simplices. For a subset S ⊆ [n], denote by

∆0
S = conv({0} ∪ {ei : i ∈ S}).

Theorem 2.5. For a sequence (S1, . . . , Sn) of subsets of [n], we have

MV (∆0
S1
, . . . ,∆0

Sn) =

1 if |
⋃
i∈I Si| ≥ |I| for all I ⊆ [n]

0 otherwise.
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Proof. The proof here is a modification of the proof of a related result [Pos09, Theorem 9.3]. Let us
recall the Bernstein–Kushnirenko–Khovanskii (BKK) theorem, which states the following. Given
lattice polytopes P1, . . . , Pn in Rn, for each i ∈ [n], let fi =

∑
a∈Pi∩Zn cax

a be a Laurent polynomial
with a generic choice of the coefficients ca. Then, one has

MV (P1, . . . , Pn) = |{t ∈ (C∗)n : f1(t) = · · · = fn(t) = 0}|.

Here C∗ denotes C \ {0}. Applying the BKK theorem to the case of standard simplices, one
concludes the desired statement by recalling the Hall’s marriage theorem. �

Exercise 2.6. Fill in the details for the last sentence of the proof of Theorem 2.5.

Exercise 2.7 (For those familiar with toric geometry). Prove the BKK theorem.

Studying Minkowski sums of standard simplices leads to the following central notion in discrete
convex optimization.

Definition 2.8. A polymatroid on [n] is the data of a function rk : 2[n] → R, called its rank function,
that satisfies

(1) rk(∅) = 0,
(2) (Monotone) rk(S1) ≤ rk(S2) if S1 ⊆ S2 ⊆ [n], and
(3) (Submodular) rk(S1) + rk(S2) ≥ rk(S1 ∪ S2) + rk(S1 ∩ S2) for all S1, S2 ⊆ [n].

Its rank is r := rk([n]), and its independence polytope IP (rk) and its base polytope BP (rk) are

IP (rk) := {x ∈ Rn≥0 : xS ≤ rk(S) for all S ⊆ [n]} and BP (rk) := IP (rk) ∩ {x[n] = r}.

An integral polymatroid is a polymatroid whose rank function rk takes values in Z.

See [Edm70] for a treatment of polymatroids from the viewpoint of polytopes and matroids, and
[Mur03] for a detailed treatment of discrete convex optimization.

Exercise 2.9. Classify all combinatorial types of independence polytopes of polymatroids on [2].

Exercise 2.10. Show that a (nonnegative) Minkowski sum of standard simplices is the indepen-
dence polytope of a polymatroid. Show that not every independence polytope of a polymatroid
arise in this way. (You may postpone the exercise until Fact 3.8.(2) and Theorem 4.5 are available).

Remark 2.11. Base polytopes of polymatroids are also known as generalized permutohedra (that
are contained in the nonnegative orthant). In [Pos09], Postnikov noted that every generalized
permutohedra is a signed Minkowski sum of the simplices {∆S}S⊆[n] where ∆S = conv{ei : i ∈ S}.

Fact 2.12. For an integral polymatroid rk on [n], the polytope IP (rk) is a lattice polytope (and hence
BP (rk) is also) [Edm70, (8)]. Moreover, in this case BP (rk) ∩ Zn is a M-convex set: a subset J of Zn

is said to be M-convex if for every α, β ∈ J with αi > βi for some i ∈ [n], there exists i 6= j ∈ [n]

such that both α− ei + ej and β + ej − ei are in J [Mur03, Theorem 4.15].

Exercise 2.13. Let the notations be as in the introduction, and recall the π-capacity polynomial
f(x) =

∑
d C(S,d)xd

d! . Let supp(f) := {d ∈ Zm≥0 : cd 6= 0} be its support. Show that for a ∈ Zm≥0 is
in supp(f) if and only if |a| = n and aI ≤ |π(

⋃
i∈I Si)| for all I ⊆ [m]. Deduce that the support of

the π-capacity polynomial f is M-convex.
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3. CHOW RINGS OF FANS

Let N and M be dual lattices of rank n, with the pairing N × M → Z denoted by 〈·, ·〉. Let
NR = N ⊗ R and MR = M ⊗ R. For instance, throughout this section one may take N = Zn and
M = (Zn)∨ ' Zn (so NR = Rn = MR), with the pairing 〈·, ·〉 being the standard inner product.

Let Σ be a rational fan in NR, i.e. a collection of rational polyhedral cones closed under taking
faces such that any two cones intersect in a face of each. Let Σ(1) denote the set of its rays, and for
ρ ∈ Σ(1), denote by uρ ∈ N its primitive ray vector (i.e. the first integral vector in the ray ρ). Unless
otherwise specified, we will always assume a fan Σ to be pure d-dimensional (i.e. all maximal cones
have dimension d), lineality-less (i.e. the minimal cone in the fan is the origin, not a linear space of
positive dimension), and smooth (i.e. for every cone σ in Σ, its primitive ray vectors form a subset
of a Z-basis of N ). In particular, Σ is simplicial (i.e. every cone σ has exactly dim(σ) many rays).

Definition 3.1. The Chow ring of Σ is the graded R-algebra1

A•(Σ) =
R[xρ : ρ ∈ Σ(1)]

IΣ + JΣ

where IΣ and JΣ are ideals defined by

IΣ =

〈∏
ρ∈S

xρ : S ⊆ Σ(1) not forming a cone in Σ

〉
and JΣ =

〈 ∑
ρ∈Σ(1)

〈uρ, v〉xρ : v ∈M

〉
.

A divisor on Σ is a linear combination D =
∑
ρ cρxρ, whose divisor class [D] is its image in A1(Σ).

Example 3.2 (skeletons of normal fans of opposite simplices). Let N = ZE/ZeE for E a finite set
with |E| = n + 1. Under the standard inner product on ZE , the dual lattice M is identified with
e⊥E := {v ∈ ZE : 〈eE , v〉 = 0} = span(ei − ej : i 6= j ∈ E). For 0 ≤ r ≤ n, let Σr,E be the pure
r-dimensional fan in NR whose maximal cones are

σS = cone{ei : i ∈ S}

for S ( E a subset of cardinality r. Then, we find that

A•(Σr,E) =
R[xi : i ∈ E]

〈
∏
i∈S′ xi : |S′| = r + 1〉+ 〈xi − xj : i 6= j ∈ E〉

' R[h]/〈hr+1〉.

Observe that Σn,E is the (outer) normal fan of the opposite simplex conv{−ei : i ∈ E} in RE , and
Σr,E is the r-skeleton of Σn,E .

Exercise 3.3. Show that A•(Σ) is spanned by square-free monomials in the xρ. In particular,
conclude that Ai(Σ) = 0 for i > d.

Definition 3.4. For a cone σ ∈ Σ, write xσ :=
∏
ρ�σ xρ. We say that Σ is balanced if the assignment

xσ 7→ 1 for every maximal cone σ of Σ defines a linear map Ad(Σ)→ R, denoted degΣ.

A fan Σ is complete if its support |Σ| :=
⋃
σ∈Σ σ equals Rn.

1We work with R coefficients here, although the original definition is over Z. Over Z, the Chow ring can have torsion.
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Exercise 3.5. Show that a complete fan Σ is balanced. In fact, the map degΣ : An(Σ) → R is an
isomorphism in this case. You may assume as a fact that An(Σ) 6= 0 when Σ is complete. Give an
example of a fan that is not balanced.

Remark 3.6. For a complete fan Σ, the Chow ring of Σ is the cohomology ring of the toric variety
XΣ, and the degree map degΣ coincides with the Poincaré duality map H2n(XΣ,R)

∼→ R. See
[CLS11, Chapter 12].

We now assume Σ to be complete for the rest of this section. In classical algebraic geometry,
intersection numbers of ample/nef divisors display a positivity behavior. In our context, the notion
of nef divisors has the following polyhedral description.

Definition 3.7. A polytope P ⊂MR is a deformation of Σ if its outer normal fan ΣP (which may have
lineality and not be smooth) coarsens Σ. A divisorD =

∑
ρ cρxρ on Σ is nef if there is a deformation

P of Σ such that cρ = maxv∈P 〈uρ, v〉 for all ρ.

Fact 3.8. We collect some facts about nef divisors on (smooth, complete, lineality-less) fans. See
[Ful93, Chapters 3 and 5] or [CLS11, Chapters 6 and 13].

(1) For a nef divisor D =
∑
ρ cρxρ, such a deformation P is unique, namely,

P = {v ∈MR : 〈v, uρ〉 ≤ cρ ∀ρ ∈ Σ(1)}.

We may thus write D = DP .
(2) Sum of nef divisors corresponds to Minkowski sum of deformations, i.e. we have

DP1 +DP2 = DP1+P2 .

In particular [DP1
] = [DP2

] if and only if P1 and P2 are translates of each other.
(3) We have degΣ(Dn

P ) = Volume(P ). In particular, for deformations P1, . . . , Pm of Σ, the vol-
ume polynomial Volume(x1DP1 +· · ·+xmDPm) of their Minkowski sums is a homogeneous
polynomial of degree n in x1, . . . , xm (cf. Fact 2.1).

Exercise 3.9 (Sanity check). (cf. Exercise 2.4) Verify that for d ∈ Zm satisfying |d| = n, we have

MV (P1
d1 , . . . , Pm

dm) = degΣ(Dd1
P1
· · ·Ddm

Pm
).

Volume polynomials of polytopes are among the prototypical examples of Lorentzian polynomi-
als. Let us recall the definition of Lorentzian polynomials introduced in [BH20], and independently
in [ALOGV24] as completely log-concave polynomials.

Definition 3.10. A real homogeneous polynomial g(x) =
∑

d cd
xd

d! ∈ R[x1, . . . , xm] of degree n
with nonnegative coefficients is said to be Lorentzian if:

(i) its support supp(g) := {d : cd 6= 0} is M-convex, and
(ii) every (n− 2)-th partial derivative ∂

∂xi1
· · · ∂

∂xin−2
g of g is a quadratic form with at most one

positive eigenvalue.

For an introduction to Lorentzian polynomials from the viewpoint of algebraic geometry, see
Eur_IntroLorentzianPolynomials (link).

https://people.math.harvard.edu/~ceur/notes_pdf/Eur_IntroLorentzianPolynomials.pdf
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Exercise 3.11 (Sanity check). Pick any one of the two the π-capacity polynomials in Example 1.4
and verify that it is indeed Lorentzian. (You may use a computer to compute eigenvalues).

Theorem 3.12. [BH20, Theorem 4.6] For nef divisors D1, . . . , Dm on Σ, the polynomial

degΣ

(
(x1D1 + · · ·+ xmDm)n

)
= n! ·

∑
d

MV (P1
d1 , . . . , Pm

dm)
xd

d!

is Lorentzian. (Note that the equality of the two polynomials above is Exercise 3.9).

When m = 2 above, the above statement is the classical Aleksandrov–Fenchel inequalities for
mixed volumes of convex bodies. The theorem is stated in [BH20] in a more general setting of nef
divisors on projective varieties.

4. STELLAHEDRAL FANS

We now return to polymatroids from the viewpoint of complete fans and nef divisors.

Definition 4.1. Define the affine permutohedral fan Σ̊n in Rn to be the fan consisting of cones

σF := cone{eF1
, . . . , eFk}

for every chain F : ∅ ( F1 ( · · · ( Fk ⊆ [n] of nonempty (not necessarily proper) subsets of [n].

Let us observe some features of the affine permutohedral fan:

(1) The primitive rays of Σ̊n are the {eS : ∅ ( S ⊆ [n]}.
(2) For every subset S ⊆ [n], the restriction of Σ̊n to the coordinate subspace RS ⊆ Rn is another

copy of the affine permutohedral fan Σ̊|S|.
(3) This fan is the full barycentric subdivision of the nonnegative orthant. More precisely, this

fan is obtained by performing stellar subdivisions of all the cones (in the order of decreasing
dimension) in the fan whose maximal cone is Rn≥0.

This fan is where “all the action is going to happen,” but is not complete. It admits the following
distinguished completion.

Definition 4.2. Define the stellahedral fan Σn in Rn to be the fan consisting of cones

σ(F ,I) := cone
(
{−ei : i ∈ I} ∪ {eF : F ∈ F}

)
for every pair (F , I) of a chain F : ∅ ( F1 ( · · · ( Fk ⊆ [n] of nonempty subsets of [n] and a subset
∅ ⊆ I ⊆ [n] such that I ∩ F = ∅ for all F ∈ F .

Example 4.3. Σ2 is illustrated below.

Let us observe some features of the stellahedral fan:

(1) Considering the pairs (F , ∅), we find that the stellahedral fan contains the affine permuto-
hedral fan as its “Rn≥0 part.”

(2) The primitive rays of Σn are the primitive rays of Σ̊n along with {−ei : i ∈ [n]}.
For a subset ∅ ( S ⊆ [n], let us denote xS to be the variable in the Chow ringA•(Σn) corresponding
to the ray of eS .
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Exercise 4.4 (Sanity check). Verify that {xS : ∅ ( S ⊆ [n]} is a basis of A1(Σn).

Theorem 4.5. [EHL23, Proposition 3.13] The assignment rk 7→
∑
S rk(S)xS gives a bijection be-

tween polymatroids on [n] and nef divisor classes on Σn.

Exercise 4.6. Show that the nef divisors from standard simplices form a basis forA1(Σn) as follows.

(1) Show that for S ⊆ [n], the function

rk(A) =

1 if A ∩ S 6= ∅

0 otherwise

is a polymatroid whose independence polytope is the simplex ∆0
S . In other words, by

Theorem 4.5, the nef divisor on Σn corresponding to ∆0
S is

∑
A∩S 6=0 xA.

(2) For ∅ ( S ⊆ [n], define hS :=
∑
A∩S 6=0 xA. Show that this defines an invertible linear

change of variables, so that {hS : ∅ ( S ⊆ [n]} is a basis of A1(Σn) (since the xS ’s form a
basis). It may help to go through an intermediate basis {yS : ∅ ( S ⊆ [n]}, where

y[n] :=
∑
A⊆[n]

xA and yS := −x[n]\S for nonempty S ( [n].

Proof of Theorem A when |Ei| = 1 . For a subset S ⊆ E, let DS be the nef divisor on Σn correspond-
ing to the simplex ∆0

S , which is a deformation of Σn. Then, by Theorem 2.5, we find that the
capacity polynomial times n! is the volume polynomial

degΣn

(
(x1DS1 + · · ·+ xmDSm)n

)
,

which is Lorentzian by Theorem 3.12. �

5. MULTI-PERMUTOHEDRAL FANS

Let us now return to the π-colored setting. Recall the setup: we had π : E � [n] andEi := π−1(i).
Let us denote

Nπ := ZE1/ZeE1 × · · · × ZEn/ZeEn ,

and for a subset F ⊆ E, denote by eF the image of eF ∈ ZE in the quotient Nπ .

Definition 5.1. Define the π-multipermutohedral fan Σπ to be the fan in Nπ
R consisting of cones

σF = cone{eF : F ∈ F}

for every chain F of nonempty π-colored subsets.
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Example 5.2. We feature two examples with n = 2. In the first, we haveE1 = {1, 1̄} andE2 = {2, 2̄}.
In the second, we have E1 = {a, b, c} and E2 = {1, 2}.

Let us observe some features of the multipermutohedral fan.

(1) The fan Σπ is pure n-dimensional, lineality-less, and smooth respect to the lattice Nπ .
(2) For each π-colored subset S, consider the subspace RS of Rπ defined by

RS := span{ei : i ∈ S} ' R|S|.

Every cone of Σπ meets every RS in a face, and moreover, under the obvious RS ' R|S|, we
have that Σπ restricted to RS≥0 is a copy of the affine permutohedral fan Σ̊|S|.

(2′) In particular, the support of Σn is equal to the support of the product fan Σ1,E1
×· · ·×Σ1,En

(where Σ1,Ei is the fan given in Example 3.2).

Exercise 5.3. Show that the Chow ring of Σπ has the following presentation:

A•(Σπ) =
R[xS : S a nonempty π-colored subset]

〈xSxS′ : S 6⊆ S′ and S 6⊇ S′〉+ 〈
∑
S3i xS −

∑
S′3j xS′ : i 6= j ∈ Ek for some k ∈ [n]〉

.

Remark 5.4. Is the ring A•(Σπ) Koszul? (I don’t know).

The relation between standard simplices and nef generators of A•(Σn) in the case of stellahedral
fans generalizes to multipermutohedral fans in the following way.

Definition 5.5. For a π-colored subset S, define hS ∈ A1(Σπ) by

hS =
∑

S′∩S 6=∅

xS′ .

Exercise 5.6. Deduce Theorem A when |Ei| = 2 for all i ∈ [n]. The following observations may be
useful. Assume throughout that |Ei| = 2 for all i ∈ [n].

(i) In this case, by identifying REi/ReEi with R for each i, note that Σπ is a complete fan in Rn,
whose 2n orthants correspond to the π-transversals.

(ii) Each hS is a nef divisor; what is the corresponding polytope in Rn?
(iii) Note that every π-transversal corresponds to an orthant in Rn, and apply Theorem 2.5 “in

each orthant.”
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So far, we could prove Theorem A when |Ei| ≤ 2 for all i ∈ [n] by “classical” methods involving
nef divisors on complete fans, their deformations, mixed volumes, and polymatroids. To obtain
Theorem A in full generality, we will need two relatively new tools: tropical Hodge theory and
normal complexes (generalizing to incomplete fans the positivity properties and deformations of
nef divisors on complete fans).

6. A GLIMPSE OF TROPICAL HODGE THEORY

Exercise 6.1 (Optional). Show that a divisor D on a complete fan Σ is nef if and only if for every
cone σ ∈ Σ, there exists a divisor D′ =

∑
ρ cρxρ representing the same divisor class [D] satisfying

the following: (i) cρ = 0 for all rays ρ of σ, and (ii) cρ ≥ 0 for all rays ρ not in σ such that σ∪ ρ forms
a cone in Σ.

We no longer assume Σ to be complete now. For incomplete fans, we take the characterization
of nefness on complete fans in Exercise 6.1 as the definition of nefness.

Definition 6.2. A divisor D on Σ is said to be nef if for every cone σ ∈ Σ, there exists a divisor
D′ =

∑
ρ cρxρ representing the same divisor class [D] satisfying the following: (i) cρ = 0 for all rays

ρ of σ, and (ii) cρ ≥ 0 for all rays ρ not in σ such that σ ∪ ρ forms a cone in Σ. When D′ can be made
to have cρ > 0 in condition (ii) for all σ, we say that D is ample.

A pure-dimensional, smooth, balanced fan is Lefschetz if it and all its star fans satisfy (the mixed
version of) the Kähler package consisting of Poincare duality, hard Lefschetz, and Hodge-Riemann
relations. We will not need the precise definition of Lefschetz fans, which can be found in [ADH23,
Section 5].

Fact 6.3. We collect some facts about Lefschetz fans. For proofs see [ADH23, Section 5].

(1) The same statement as in Theorem 3.12 holds for Lefschetz fans.
(2) A product of Lefschetz fans is Lefschetz.
(3) A stellar subdivision of a Lefschetz fan is Lefschetz.

These facts, together with the easy verification that the fan Σ1,E (Example 3.2) is Lefschetz,
implies that the multi-permutohedral fan is Lefschetz. Moreover, we have the following.

Exercise 6.4. Show that the divisors hS on the multipermutohedral fan Σπ are nef.

Hence, we deduce the following.

Proposition 6.5. The polynomial

degΣπ

(
(x1hS1 + · · ·+ xmhSm)n

)
∈ R[x1, . . . , xm]

is Lorentzian for any π-colored subsets S1, . . . , Sm of E.

Due to this proposition, for the proof of Theorem A, we are done once we show that n! times the
π-capacity polynomial equals the polynomial degΣπ

(
(x1hS1

+ · · ·+ xmhSm)n
)
. In the next section,

we establish this following [CDE+24].
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7. MULTI-POLYMATROIDS AND THEIR INDEPENDENCE COMPLEXES

Let us first describe a generalization of Fact 3.8.(3) to the setting of not necessarily complete fans,
given by Nathanson and Ross [NR23]. Unlike the complete case, it requires a choice of an inner
product ∗ on NR. Let Σ be a (pure d-dimensional, lineality-less, and smooth) fan in NR.

Definition 7.1. A divisor D =
∑
ρ cρxρ on Σ is said to be ∗-pseudo-cubical if for every cone σ ∈ Σ,

σ ∩ {v ∈ NR : v ∗ uρ = cρ for all rays ρ of σ} is nonempty,

and D is further ∗-cubical if the nonempty intersection above in the relative relint(σ) of σ. For a
∗-pseudo-cubical divisor D on Σ, its normal complex P∗,Σ(D) is the union

P∗,Σ(D) :=
⋃
σ∈Σ

P∗,σ(D) where P∗,σ(D) := σ ∩ {NR : v ∗ uρ ≤ cρ for all rays ρ of σ}.

We will drop the “∗-” when the inner product is clear in context.

Example 7.2. With the standard inner product on R2, the divisor D1 = 2x1 + 2x2 + 3x12 on the
stellahedral fan Σ2 is a cubical. The divisor D2 = x1 + x2 + x12 is pseudo-cubical. The divisor
D3 = 2x1 + x2 + 3x12 is nef but not pseudo-cubical.

Exercise 7.3. With the standard inner product on Rn, show that a divisor D =
∑
∅(S⊆[n] cSxS on

the affine permutohedral fan Σ̊n is pseudo-cubical if and only if for all ∅ ⊆ S ( S′ ( S′′ ⊆ [n] such
that |S′′ \ S′| = |S′ \ S| = 1,

cS ≤ cS′ and cS′ − cS ≥ cS′′ − cS′ ,

with the convention that c∅ = 0. (The divisor is further cubical if both inequalities above is strict).

For each maximal cone σ ∈ Σmax, the volume Vol∗,σ on spanR(σ) is normalized as follows.
Let N(σ) be the sublattice N ∩ spanR(σ), and let M(σ) be its dual lattice, which is embedded
as a lattice in NR via the inner product ∗. A unit simplex ∆ with respect to the lattice M(σ) is
assigned Vol∗,σ(∆) = 1. We caution that such normalization of the volume displays behavior that
requires some care; for example, the in cone cone{e12} in R2 with the standard inner product, the
line segment [0, e12] has volume 2.

Theorem 7.4. [NR23, Main Result] Suppose Σ is balanced. For a ∗-pseudo-cubical divisor D on Σ,
we have

degΣ(Dd) = Vol∗,Σ(P∗,Σ(D)) :=
∑

σ∈Σmax

Vol∗,σ(P∗,σ(D)).

We now apply this theory to multi-permutohedral fans. Let ∗ be the inner product on Nπ

obtained as the product of inner product each REi/ReEi such that ej is a unit vector for all j ∈ Ei.
Note that ei and ej are orthonormal if i, j ∈ E satisfies π(i) 6= π(j). In particular, the inner product
∗ has the following pleasant feature.

Proposition 7.5. For a π-colored subset S, the set {ei : i ∈ S} is simultaneously an orthonormal
basis of its linear span RS and a Z-basis of the lattice RS ∩Nπ

R . Thus, for every maximal cone σ of
Σπ , whose span is RT for some π-transversal T , the volume Vol∗,σ agrees with the usual volume on
RT ' Rn where the standard simplex has volume 1.
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For the proof of Theorem A, we would like to compute degΣπ

(
(x1hS1

+ · · · + xmhSm)n
)

in
this way, but x1hS1

+ · · · + xmhSm is generally not pseudo-cubical even if all x1, . . . , xm are all
nonnegative. We thus consider the following class of divisors that is slightly larger than the pseudo-
cubical divisors.

Definition 7.6. A multi-polymatroid is a function rkπ : 2π → R on the set of π-colored subsets of E
such that for every π-transversal T , the restriction rkπ |2T is a polymatroid on T . The independence
polytopal complex IP (rkπ) of a multi-polymatroid rkπ is the polyhedral complex in Nπ

R defined as
the union

IP (rkπ) =
⋃

π-colored S

IP (rkπ |2S )

where each IP (rkπ |2S ) is considered as a subset of RS . We will often equate the function rkπ with
the divisor D =

∑
S rkπ(S)xS on Σπ .

Note that the set of multi-polymatroid is a full-dimensional convex cone in R2π\{∅}. Moreover,
it is straightforward to verify that each hS is a multi-polymatroid, whose independence polytopal
complex satisfies IP (hS |2T ) = ∆0

S∩T for every π-transversal T .

Note that IP (rkπ) is a subset of the support of the multi-permutohedral fan. One may compare
IP (rkπ) and the normal complex P∗,Σπ (Drkπ ).

Proposition 7.7. [CDE+24, Lemma 4.22 and 5.3] For a function rkπ , if the divisor D =
∑
S rkπ(S)

on Σπ is pseudo-cubical then D is a poly-multimatroid. Moreover, in that case we have IP (rkπ) =

P∗,Σπ (D).

Now, we come to an easy but crucial observation:

Lemma 7.8. The volume Vol∗,Σπ (IP (rkπ)), as a function of rkπ on the full-dimensional cone of
multi-polymatroids, is a polynomial. This polynomial equals the polynomial degΣπ (Dn

rkπ
) if there

exists a nonempty open subset of cubical divisors Drkπ for which the two polynomials agree.

Proof. The first statement follows from that the volume is the sum of the volumes of IP (rkπ |2T ) for
each π-transversal T . The second statement follows from that the zero loci of a nonzero polynomial
cannot be dense. �

Proof of Theorem A. By Theorem 2.5 and Proposition 6.5, it suffices to show that Vol∗,Σπ (IP (rkπ))

equals degΣπ (Dn
rkπ

) for all multi-polymatroid rkπ . But these as polynomials in rkπ agree by the
lemma and the proposition above. �
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