COMPLEX ANALYSIS NOTES

CHRISTOPHER EUR

Notes taken while reviewing (but closer to relearning) complex analysis through [SSh03] and [Ahl79]. Some solutions to the exercises in [SSh03] are also written down. I do not claim that the notes or solutions written here are correct or elegant.

1. Preliminaries to complex analysis

The **complex numbers** is a field $\mathbb{C} := \{a + ib : a, b \in \mathbb{R}\}\$ that is complete with respect to the modulus norm $|z| = z\overline{z}$. Every $z \in \mathbb{C}$, $z \neq 0$ can be uniquely represented as $z = re^{i\theta}$ for $r > 0, \theta \in [0, 2\pi)$. A region $\Omega \subset \mathbb{C}$ is a connected open subset; since \mathbb{C} is locally-path connected, connected+open \implies path-connected (in fact, PL-path-connected). Denote the open unit disk by $\mathbb{D}.$

Definition 1.1. A function $f: U \to \mathbb{C}$ for $U \subset \mathbb{C}$ open is **holomorphic/analytic/complex**differentiable at $z_0 \in U$ if

$$
\lim_{h \to 0} \frac{f(z_0 + h) - f(z_0)}{h}
$$

exists, and we denote the limit value by $f'(z_0)$. Equivalently, f is holomorphic at z_0 iff there exists $a \in \mathbb{C}$ and such that $f(z_0 + h) - f(z_0) - ah = h\psi(h)$ and $\psi(h) \to 0$ as $h \to 0$, in which case $a = f'(z_0)$. f is **holomorphic** if it is at z_0 for all $z_0 \in U$.

Proposition 1.2. Differentiation rules about $f + g$, fg , f/g and $f \circ g$ (chain rule) holds.

Theorem 1.3. For $f: U \to \mathbb{C}$, write $f = u + iv$ where $u, v: U \to \mathbb{R}$. f is holomorphic at $z_0 \in U$ if and only if f as a map $\mathbb{R}^2 \supset U \to \mathbb{R}^2$ is differentiable at z_0 and satisfies

Cauchy-Riemann equations: $u_x = v_y$ and $u_y = -v_x$ at z_0

Proof. First, note that $a + ib \in \mathbb{C}$ can identified with the real matrices of the form $\begin{bmatrix} a & -b \\ b & a \end{bmatrix}$. This also works well with $\mathbb{C} \simeq \mathbb{R}^2$ in that the vector in \mathbb{R}^2 for $(a+ib)(c+id)$ is $\begin{bmatrix} a & -b \\ b & a \end{bmatrix} \begin{bmatrix} c \\ d \end{bmatrix}$.

Now, as a map in real variables, f is differentiable iff there exists a matrix A such that $|f(z_0 +$ $h)-f(z_0)-Ah| = |h||\psi(h)|$ with $|\psi(h)| \to 0$ as $h \to 0$. Now, multiplication by A is complex number multiplication iff A of the form $\begin{bmatrix} a & -b \\ b & a \end{bmatrix}$. Thus, if f is differentiable in real sense and satisfies the Cauchy-Riemann equations, then $f(z_0 + h) - f(z_0) - (u_x(z_0) + iv_x(z_0))h = h\psi(h)$ with $|\psi(h)| \to 0$ as $h \to 0$, and hence holomorphic at z_0 . If f is holomorphic, then letting A be the matrix of $f'(z_0)$ works, and thus Cauchy-Riemann equation follows.

Definition 1.4. Define two differential operators by:

$$
\frac{\partial}{\partial z} = \frac{1}{2} \left(\frac{\partial}{\partial x} - i \frac{\partial}{\partial y} \right) \qquad \frac{\partial}{\partial \overline{z}} = \frac{1}{2} \left(\frac{\partial}{\partial x} + i \frac{\partial}{\partial y} \right)
$$

Proposition 1.5. f is holomorphic at z_0 iff $\frac{\partial f}{\partial \overline{z}}(z_0) = 0$. Moreover, if holomorphic,

$$
f'(z_0) = \frac{\partial f}{\partial z}(z_0) = 2\frac{\partial u}{\partial z}(z_0) = 2i\frac{\partial v}{\partial z}(z_0) \text{ and } \det[Df]_{z_0} = |f(z_0)|^2
$$

Power series are good (and really the only) examples of holomorphic functions.

Theorem 1.6. Given a power series $\sum_{n=0}^{\infty} a_n z^n$, let $1/R := \limsup |a_n|^{1/n}$ (with $1/\infty = 0$ and $1/0 = \infty$). Then for $|z| < R$, the series (uniformly) converges absolutely, and diverges for $|z| > R$. Moreover, $f(z) := \sum_{n=0}^{\infty} a_n z^n$ is holomorphic on its disk of convergence with $f'(z) = \sum_{n=0}^{\infty} n a_n z^n$ with the same radius of convergence.

Proof. Compare to geometric series (Weierstrass M-test), and do some computation. \Box

It is useful to note the relationship between the root-test and the ratio-test; ratio-test is often the easier option, but root-test is more general. More precisely,

Proposition 1.7. For any sequence $\{c_n\}$ of positive numbers,

$$
\liminf \frac{c_{n+1}}{c_n} \le \liminf \sqrt[n]{c_n} \quad \text{and} \quad \limsup \sqrt[n]{c_n} \le \limsup \frac{c_{n+1}}{c_n}
$$

1.8. Exercises.

Exercise 1.A. [SSh03, 1.4] Show that there is no total ordering on $\mathbb C$

Proof. Suppose there is a total ordering > on \mathbb{C} , and WLOG $i > 0$. Then $-1 = i^2 > 0$, and so $-1 > 0$, and so $1 = (-1)^2 > 0$ but $-1+1 > 1$. Thus, $1 > 0$ and $1 < 0$, which is a contradiction. \Box

Exercise 1.B. [SSh03, 1.7] For $z, w \in \mathbb{C}$ such that $\overline{z}w \neq 1$ and $|z| \leq 1, |w| \leq 1$, show that

$$
\left|\frac{w-z}{1-\overline{w}z}\right| \le 1
$$

where the equality occurs exactly when $|z| = 1$ or $|w| = 1$. Moreover, for $w \in \mathbb{D}$, the mapping $F: z \mapsto \frac{w-z}{1-\overline{w}z}$ is a bijective holomorphic map $F: \mathbb{D} \to \mathbb{D}$ that interchanges 0 and w, and $|F(z)| = 1$ if $|z|=1$. These mappings are called **Blaschke factors**

Proof. The inequality is equivalent to $|w - z|^2 \leq |1 - \overline{w}z|^2$, which when written out is equivalent to $|z|^2 + |w|^2 \leq 1 + |w|^2 |z|^2$, and this inequality holds with equality exactly at $|z| = 1$ or $|w| = 1$ since $0 \leq (1-|w|^2)(1-|z|^2)$ for $|z|, |w| \leq 1$. One computes that $F \circ F(z) = z$ and the rest of claims about F follows immediately from the inequality. \square

Exercise 1.C. [SSh03, 1.9] Show that Cauchy-Riemann equations in polar coordinates is

$$
u_r = -\frac{1}{r}v_\theta, \quad v_r = -\frac{1}{r}u_\theta
$$

Proof. With $x = r \cos \theta, y = r \sin \theta$, computing du for $u : \mathbb{R}^2 \to \mathbb{R}$ in two coordinates (x, y) and (r, θ) gives us (and likewise for dv):

$$
\begin{bmatrix} \cos \theta & \sin \theta \\ -r \sin \theta & r \cos \theta \end{bmatrix} \begin{bmatrix} u_x \\ u_y \end{bmatrix} = \begin{bmatrix} u_r \\ u_\theta \end{bmatrix}, \quad \begin{bmatrix} \cos \theta & \sin \theta \\ -r \sin \theta & r \cos \theta \end{bmatrix} \begin{bmatrix} v_x \\ v_y \end{bmatrix} = \begin{bmatrix} v_r \\ v_\theta \end{bmatrix}
$$

and thus we have

$$
\begin{bmatrix} r\cos\theta & -\sin\theta \\ r\sin\theta & \cos\theta \end{bmatrix} \begin{bmatrix} u_r & v_r \\ u_\theta & v_\theta \end{bmatrix} = \begin{bmatrix} u_x & v_x \\ u_y & v_y \end{bmatrix}
$$

Now, $u_x = v_y$ and $u_y = -v_x$ becomes:

 (1) : $r \cos \theta u_r - \sin \theta u_\theta = r \sin \theta v_r + \cos \theta v_\theta$, (2) : $r \sin \theta u_r + \cos \theta u_\theta = -r \cos \theta v_r + \sin \theta v_\theta$ And from here $(1)\cdot \cos\theta + (2)\cdot \sin\theta$ gives us $ru_r = v_\theta$, and $-(1)\cdot \sin\theta + (2)\cdot \cos\theta$ gives us $rv_r = -u_\theta$, as desired. \Box

Exercise 1.D. [SSh03, 1.10,11] Show that $4\frac{\partial}{\partial \theta}$ ∂z $\frac{\partial}{\partial \overline{z}}=4\frac{\partial}{\partial \overline{z}}$ $\frac{\partial}{\partial z} = \Delta$ where Δ is the **Laplacian** $\Delta =$ $\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$. Moreover, show that if f is holomorphic on an open set Ω , then real and imaginary parts of f are **harmonic**, i.e. Laplacian is zero.

Proof. $4\frac{1}{2}$ $\frac{1}{2}(\partial_x - i \partial_y)\frac{1}{2}$ $\frac{1}{2}(\partial_x + i\partial_y) = \Delta$, and f holomorphic means $\frac{\partial f}{\partial \overline{z}} = 0$, and so $\Delta f = 0$.

Exercise 1.E. [SSh03, 1.13] If f is holomorphic on an open set Ω , and (i) Re(f), or (ii) Im(f), or (iii) |f| is constant, then f is constant on Ω .

Proof. It suffices to show that $f' = 0$ on Ω on any of the conditions given. For (i) or (ii), $\frac{\partial f}{\partial z}$ $2\frac{\partial u}{\partial z} = i2\frac{\partial v}{\partial z}$, so $f' = 0$. For (iii), $u^2 + v^2$ is constant, and so applying $\partial_{xx}, \partial_{yy}$ to $(u^2 + v^2) = C$ gives us $u_{xx}u + v_{xx}v + (u_x^2 + v_y^2) = 0$, $u_{yy}u + v_{yy}v + (u_y^2 + v_y^2) = 0$. Adding the two and using the fact that u, v are harmonic, we have that $u_x = u_y = v_x = v_y = 0$.

Exercise 1.F. [SSh03, 1.14,15] Prove the **summation by parts** formula (defining $B_k := \sum_{n=1}^k b_n$ and $B_0 := 0$),

$$
\sum_{n=M}^{N} a_n b_n = a_N B_N - a_M b_{M-1} - \sum_{n=M}^{N-1} (a_{n+1} - a_n) B_n
$$

and use the formula to prove the **Abel's theorem**: If $\sum_{n=1}^{\infty} a_n$ converges, then

$$
\lim_{r \to 1^{-}} \sum_{n=1}^{\infty} a_n r^n = \sum_{n=1}^{\infty} a_n
$$

Proof. For the summation by parts formula, draw the $n \times n$ matrix $(a_i b_j)_{1 \leq i,j \leq n}$ and consider what each terms in the summation mean. As for Abel's theorem, something is weird: since $f_N(r)$ = $\sum_{n=1}^{N} a_n r^n$ is continuous on $0 \le r \le 1$ and $f_N \to f$ uniformly (where $f := \sum_{n=1}^{\infty} a_n r^n$), we can commute the two limits. \Box

Exercise 1.G. [SSh03, 1.20] Show that: (1) $\sum nz^n$ \sum diverges for all points on the unit circle, (2) $\frac{1}{n^2}z^n$ converges for all points on the unit circle, (3) $\sum \frac{1}{n}z^n$ converges for all points on the unit circle except $z = 1$.

Proof. For (1) , each terms don't go to zero. For (2) , absolute convergence. For (3) , we need: **Lemma:** Suppose partial sums A_n of $\sum a_n$ is a bounded sequence, and $b_0 \geq b_1 \geq b_2 \geq \cdots$ with $\lim_{n\to\infty} b_n = 0$. Then $\sum a_n b_n$ is convergent. (Proof: use summation by parts formula).

This lemma also implies the Alternating Series Test with $a_n = (-1)^n$. For (3), we note that $a_n = z^n$ satisfies the condition of the lemma for $|z| \leq 1, z \neq 1$.

4 CHRISTOPHER EUR

2. Cauchy's Theorem and Basic Applications

A curve γ is assumed piecewise differentiable unless otherwise noted. A curve γ is closed if the initial and end points are the same. A R-path is a curve entirely consisting of horizontal and vertical segments. Note that any region in $\mathbb C$ is R-path-connected.

A region Ω is **simply-connected** if $\pi_1(\Omega) = 0$, or equivalently, if any continuous map $S^1 \to \Omega$ extends to $B^2 \to \Omega$, or equivalently, if complement of Ω in $\widehat{\mathbb{C}}$ is connected.

2.1. Cauchy's Theorem.

Definition 2.2. For $f : \Omega \to \mathbb{C}$ and $\gamma : I \to \Omega$, we define the **integral of** f **along** γ by:

$$
\int_{\gamma} f dz := \int_{I} f(\gamma(t)) \gamma'(t) dt
$$

Equivalently, the integral is the integration of a 1-form as follows: $\int_{\gamma}(u dx - v dy) + i(u dy + v dx)$.

Proposition 2.3. The defining $\text{length}(\gamma) := \int_{\gamma} |dz| = \int_{I} |\gamma'(t)| dt$, one has the following inequality:

$$
\left| \int_{\gamma} f dz \right| \leq \int_{\gamma} |f| |dz| \leq \left(\sup_{\gamma} |f| \right) \cdot \mathrm{length}(\gamma)
$$

Theorem 2.4. For a 1-form $\omega = pdx + qdy$ on an open region Ω , $\int_{\gamma} pdx + qdy = 0$ for any closed curve γ in Ω if and only if ω is exact. Moreover, if $\omega = df$, then for any $\gamma : [a, b] \to \Omega$,

$$
\int_{\gamma} \omega = f(\gamma(b)) - f(\gamma(a))
$$

Proof. The second part is easy, and it implies one direction of the first part. For the converse, if the integral along any closed curve is zero, pick an arbitrary point $p \in \Omega$ and define $F(z) := \int_{\gamma} \omega$ for $z \in \Omega$ where γ is a curve from p to z. By making γ an R-path, with last segment being horizontal or vertical, one recovers that $dF = \omega$.

Corollary 2.5. If $f: \Omega \to \mathbb{C}$ has a primitive, i.e. $F: \Omega \to \mathbb{C}$ such that $F' = f$, then $\int_{\gamma} f = 0$ for all closed $\gamma \subset \Omega$.

Proof. If $F = U + iV$ and $F' = f = u + iv$, then $dF = U_x dx + U_y dy + i(V_x dx + V_y dy)$ and $u = U_x = V_y, v = V_x = -U_y$, so that f as a 1-form equals dF.

Theorem 2.6. [Goursat's Theorem] If f is analytic on R, a rectangle with horizontal and vertical sides, then

$$
\int_{\partial R} f dz = 0
$$

Proof. Keep subdividing rectangles into fours and pick ones with biggest integral and converge to z₀. At each step, we have $|\eta(R_n)| \geq 4^{-n} |\eta(R)|$. Now, make n large enough $(R_n$ small enough to z₀) so that

$$
|f(z) - f(z_0) - (z - z_0)f'(z_0)| < \epsilon |z - z_0|
$$

Note that $\int_{\partial R} dz = 0 = \int_{\partial R} z dz$, so integrating both sides of inequality above gives $|\eta(R_n)| \leq$ $e \int_{\partial R_n} |z - z_0||dz|$. Rest is computation.

Proposition 2.7. Theorem 2.6 still holds if f is holomorphic on $R\setminus\{z_1,\ldots,z_k\}$ ($z_i \in \text{int}(R)$) where $\lim_{z \to z_i} (z - z_i) f(z) = 0 \quad \forall i$

Proof. WLOG let $k = 1$ and use Theorem 2.6 to shrink the boundary of rectangle to a very small square centered at z_1 . **Theorem 2.8.** [Cauchy's Theorem I] If f is holomorphic on an open disk D (or on D minus finite points satisfying the condition in Proposition 2.7), then for any closed $\gamma \subset D$,

$$
\int_{\gamma} f dz = 0
$$

Proof. Construct the primitive of f as $F(z) := \int_{\sigma} f dz$ where σ is an R-path from a pre-fixed point p to z . F is well-defined due to Theorem 2.6 (Proposition 2.7).

Theorem 2.9. Suppose f is holomorphic on open region Ω . Then if $\gamma_0, \gamma_1 \subset \Omega$ are homotopic (need be end-point homotopy), then

$$
\int_{\gamma_0} f dz = \int_{\gamma_1} f dz
$$

Proof. Let $\gamma_s(t) : I \times I \to \Omega$ be the homotopy. Since $\text{Im}(\gamma_s(t)) \subset \Omega$ is compact, there exists $\epsilon > 0$ such that any 3 ϵ -ball around a point in Im($\gamma_s(t)$) is contained in Ω . Also, there exist $\delta > 0$ such that $\sup |\gamma_{s_0}(t) - \gamma_{s_1}(t)| < \epsilon$ whenever $|s_0 - s_1| < \delta$. Use these to make disks $\{D_0, \ldots, D_n\}$ of radius 2ϵ , and consecutive points $\{z_0, \ldots, z_{n+1}\} \subset \gamma_{s_0}, \{w_0, \ldots, w_{n+1}\} \subset \gamma_{s_1}$ with $z_0 = w_0, z_{n+1} = w_{n+1}$ such that $z_i, z_{i+1}, w_i, w_{i+1} \in D_i$. Now Theorem 2.8 integrals implies that integrals along closed curves $z_i \stackrel{\text{straight}}{\rightarrow} w_i \stackrel{\gamma_{s_1}}{\rightarrow} w_{i+1} \stackrel{\text{straight}}{\rightarrow} z_{i+1} \stackrel{-\gamma_{s_0}}{\rightarrow} z_i$ is zero, and adding these up we have $\int_{-\gamma_{s_0}+\gamma_{s_1}} f dz = 0$. To finish the proof, divide interval I into many pieces all of length less than δ .

Theorem 2.10 (Cauchy's Theorem II). If f is holomorphic on an simply-connected region Ω , then for any closed $\gamma \subset \Omega$,

$$
\int_\gamma f=0
$$

Proof. Homotope γ to a constant map and use Theorem 2.9

Proposition 2.11. Let $a \in \mathbb{C}$ and γ a closed curve not going through a. Then the **index of a** point a with respect to γ (or, the winding number of γ around a), defined as

$$
n(\gamma,a):=\frac{1}{2\pi i}\int_{\gamma}\frac{1}{z-a}dz
$$

is an integer. In fact, if $C(\mathbb{C}\backslash\{a\})$ is the group of chains of closed curves in $\mathbb{C}\backslash\{a\}$, then the map $C(\mathbb{C}\backslash\{a\}) \to \mathbb{Z}$ given by $\gamma \mapsto n(\gamma, a)$ is the map $C(\mathbb{C}\backslash\{a\}) \to H_1(\mathbb{C}\backslash\{a\}) \stackrel{\sim}{\to} \mathbb{Z}$.

Proof. Homotope γ to lie on a circle centered at a and compute. For the second statement, note that H_1 is the abelianization of π_1 .

Proposition 2.12. Given a closed curve γ , define the **regions determined by** γ as the connected open components of $\mathbb{C} - \gamma$. Then the number $n(\gamma, a)$ only depends on the region determined by γ that a belongs to.

Proposition 2.13. Let $C(\Omega)$ be the group of chains of closed curves on open region Ω . Given $\gamma \in C(\Omega)$, we have that $[\gamma] = 0 \in H_1(\Omega)$ if and only if $n(\gamma, a) = 0$ for any $a \in \mathbb{C} - \Omega$.

Theorem 2.14 (General Cauchy's Theorem). If f is holomorphic on an open region Ω , then

$$
\int_{\gamma} f dz = 0
$$

for all $\gamma \in C(\Omega)$ such that $[\gamma] = 0 \in H_1(\Omega)$.

Proof. $\vert \text{TODO} \vert$

2.15. Basic Applications of Cauchy's Theorem.

Remark 2.16. Even before touching upon calculus of residues, one can compute many real integrals using toy-contours and Cauchy's Theorem. (Examples in the Exercises)

Theorem 2.17 (Cauchy integral formulas). Let f be holomorphic on a region Ω , and $\overline{D} \subset \Omega$ be a closed disk and $C := \partial \overline{D}$. Then for any $z \in D$,

$$
f(z) = \frac{1}{2\pi i} \int_C \frac{f(\zeta)}{\zeta - z} d\zeta
$$

Furthermore, one has that

$$
f^{(n)}(z) = \frac{n!}{2\pi i} \int_C \frac{f(\zeta)}{(\zeta - z)^{n+1}} d\zeta
$$

Proof. Fix $z_0 \in D$. By Theorem 2.8 on \int_C $f(\zeta)-f(z_0)$ $\int_{\zeta-z_0}^{\zeta-t(z_0)} d\zeta = 0$, and linearity of integral gives \int_C $f(\zeta)$ $\frac{J(\zeta)}{\zeta-z_0}d\zeta=$ $n(C, z_0) \cdot f(z_0)$. The second part of the theorem follows from the following more general lemma:

Lemma 2.18. [Ahl79, 4.2.3] If $\phi(\zeta)$ is continuous on an arc γ , then $F_n(z) := \int_{\gamma}$ $\frac{\phi(\zeta)}{(\zeta-z)^n} d\zeta$ is holomorphic in each region determined by γ and $F'_n(z) = nF_{n+1}(z)$.

 \Box

Theorem 2.19 (General Cauchy's formula). Let f be holomorphic on a region Ω , and γ be a cycle such that $\gamma \sim 0 \in H_1(\Omega)$. Then for any $z \in \Omega$ not on γ , we have

$$
n(\gamma, z)f(z) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(\zeta)}{\zeta - z} d\zeta
$$

Corollary 2.20 (Cauchy's inequality). If f holomorphic on open Ω and $\overline{D}_R(z_0) \subset \Omega$, then

$$
|f^{(n)}(z_0)| \le \frac{n! \|f\|_C}{R^n}
$$

where $||f||_C = \sup_{z \in C} |f(z)|$.

Theorem 2.21 (Morera's Theorem). If f is continuous on open Ω and $\int_{\gamma} f dz = 0$ for all closed $\gamma \subset \Omega$, then f is holomorphic on Ω .

Proof. Can define a primitive of f by $F(z) := \int_{\sigma} f dz$, and Theorem 2.17 implies that $F' = f$ is holomorphic as well. \Box

Remark 2.22. In the above statement, since any open set can be covered by open disks, it suffices to check $\int_{\partial R} f dz = 0$ for every rectangle $R \subset \Omega$.

Theorem 2.23 (Taylor's Theorem I). Suppose f is holomorphic on a region Ω , and $\overline{D}_R(z_0) \subset \Omega$. Then for all $z \in D$, f has a power series expansion

$$
f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n
$$
 where $a_n = \frac{f^{(n)}(z_0)}{n!}$

Proof. Let $C = \partial \overline{D}$ and by Theorem 2.17 write $f(z) = \frac{1}{2\pi i} \int_C$ $f(\zeta)$ $\frac{f(\zeta)}{\zeta-z}d\zeta$. Now, note that for any $|z - z_0| < r$ with $r < R$, we have a uniformly convergence series

$$
\sum_{n=0}^{\infty} \left(\frac{z-z_0}{\zeta-z_0}\right)^n = \frac{1}{1-\frac{z-z_0}{\zeta-z_0}} = (\zeta-z_0)\frac{1}{\zeta-z}
$$

Uniform convergence means that we can interchange integral and the summation, and hence

$$
f(z) = \sum_{n=0}^{\infty} \frac{1}{2\pi i} \int_C \frac{f(\zeta)}{(\zeta - z_0)^{n+1}} d\zeta \cdot (z - z_0)^n = \sum_{n=0}^{\infty} a_n (z - z_0)^n
$$

Corollary 2.24. Suppose f is holomorphic on $D_R(z_0)$. Then in the power series expansion $\sum_{n=0}^{\infty} a_n(z-\frac{1}{2})$ $(z_0)^n$ of f at z_0 , the coefficients a_n are given by

$$
a_n = \frac{1}{2\pi r^n} \int_0^{2\pi} f(z_0 + re^{i\theta}) e^{-in\theta} d\theta
$$

for any $0 < r < R$.

Proof. Combine Theorem 2.17 and Theorem 2.23. □

Corollary 2.25 (Mean-value property). If f is holomorphic on $D_R(z_0)$, and $Re(f) = u$, then

$$
f(z_0) = \frac{1}{2\pi} \int_0^{2\pi} f(z_0 + re^{i\theta}) d\theta \text{ and } u(z_0) = \frac{1}{2\pi} \int_0^{2\pi} u(z_0 + re^{i\theta}) d\theta
$$

Theorem 2.26 (Analytic continuation). If f, g are analytic on a region Ω and agrees on a set with a limit point in Ω , then $f \equiv g$. (If $f = g$ on some open subset of Ω , then $f \equiv g$).

Proof. One shows that zeroes of non-zero analytic functions are isolated by using Theorem 2.23 as follows: let E_1 be points where all derivatives vanish, and E_2 be points where at least one derivative is nonzero; both are open.

Theorem 2.27 (Liouville's Theorem). If f is entire and bounded, then f is constant.

Proof. Show $f' = 0$ on any $z_0 \in \mathbb{C}$ by Cauchy's inequality.

Corollary 2.28 (Fundamental Theorem of Algebra). A polynomial $P(z)$ has a root in \mathbb{C} .

Theorem 2.29. If $\{f_n\}$ is holomorphic on a region Ω and $f_n \to f$ uniformly on every compact subset of Ω , then f is holomorphic on Ω . Moreover, $f'_n \to f'$ uniformly on every compact subset of Ω.

Proof. Use uniform convergence to interchange limit and integral to find that f satisfies Morera's Theorem. For the second part, prove for every closed disk.

Often a holomorphic function is thus built as $\sum_{n=0}^{\infty} f_n(z)$. (e.g. Zeta function). The following is the continuous version:

Proposition 2.30. For an open Ω , suppose $F : \Omega \times [0,1] \rightarrow \mathbb{C}$ be continuous and $F(z,s)$ is holomorphic for each $s \in [0,1]$. Then $f(z) := \int_0^1$ 0 $F(z, s)ds$ is holomorphic.

Let Ω be a symmetric open subset, in the sense that $z \in \Omega \Leftrightarrow \overline{z} \in \Omega$ (i.e. symmetric across the real-axis). In this case Ω partitions into Ω^+, Ω^-, I , the upper, lower, real-line parts of Ω . The next two theorems are in this setting.

Theorem 2.31 (Symmetry principle). If f^+ and f^- are holomorphic on Ω^+ , Ω^- , and extends continuously to I with $f^+(x) = f^-(x)$ for all $x \in I$, then f defined piecewise accordingly on Ω is holomorphic.

Proof. At each open disk in Ω centered on a point on I, use Morera with ϵ -shifting and partitions of rectangles under consideration.

Theorem 2.32 (Schwarz reflection principle). Suppose f is holomorphic on Ω^+ and extends continuously to I with $f(I) \subset \mathbb{R}$. Then there exist F holomorphic on Ω such that $F = f$ on Ω^+ .

Proof. Define the lower half to be $F(z) = \overline{f(\overline{z})}$, and use the symmetry principle.

2.33. Exercises.

Exercise 2.A. [SSh03, 2.1,2] Evaluate the following integrals:

Fresnel integrals:
$$
\int_0^\infty \sin(x^2) dx = \int_0^\infty \cos(x^2) dx = \frac{\sqrt{2\pi}}{4}
$$

$$
\int_0^\infty \frac{\sin x}{x} dx = \frac{\pi}{2}
$$

Proof. Follow the hint. \square

Exercise 2.B. [SSh03, 2.7] Suppose $f : \mathbb{D} \to \mathbb{C}$ is holomorphic, and let $d := \text{diam}(f(\mathbb{D})) =$ $\sup_{z,w\in\mathbb{D}}|f(z)-f(w)|.$ Then

$$
2|f'(0)| \le d
$$

and equality holds precisely when f is linear.

Proof. For any $0 \lt r \lt 1$, we have that $2f'(0) = \frac{1}{2\pi i} \int_{\partial D_r}$ $f(\zeta)-f(-\zeta)$ $\frac{-f(-\zeta)}{\zeta^2}d\zeta$, and thus $2|f'(0)| \leq$ 1 $\overline{2\pi}$ d $\frac{d}{r^2}(2\pi r) = d/r$ for any $0 < r < 1$. Hence, $2|f'(0)| \leq d$, as desired. That equality holds when f is linear is clear. For converse, we first consider the following lemma:

Lemma: If f is holomorphic on \mathbb{D} and non-constant, then $\exists z \in \mathbb{D}$ such that $|f(0)| < |f(z)|$. (Proof: If $f(0) = 0$ where is nothing to prove. So assume not can let $R > 0$ be such that $f(z) \neq 0$ on $|z| < R$. Note that for by Cauchy integral formula we have $|f(0)| \leq \frac{1}{2\pi} \int_{\partial D_r}$ $|f(\zeta)|$ $\frac{\left(\zeta\right)}{r}|d\zeta|$ for any $0 < r < R$. If $|f(0)| = \sup_{|\zeta|=r} |f(\zeta)|$, then $|f(\zeta)| = |f(0)|$ constant, so that f is constant by [SSh03, 2.15]. Thus, $||f(0)| < \sup_{|\zeta|=r} |f(\zeta)|$.

Back to the main proof: now, use power series expansion and consider $f(z) - f(-z)$ to conclude that if reserved for later. turns out this is a hard problem

Exercise 2.C. [SSh03, 2.12] Let $u : \mathbb{D} \to \mathbb{R}$ be C^2 and harmonic (i.e. $\Delta u = 0$). Then show that there exists holomorphic f on $\mathbb D$ such that $\text{Re}(f) = u$. Moreover, the imaginary part of f is unique upto a (real) additive constant.

Proof. First, let $g(z) := 2\frac{\partial u}{\partial z}$. Note that g is holomorphic on \mathbb{D} since $\frac{\partial g}{\partial \overline{z}} = 2\frac{\partial}{\partial \overline{z}}$ $\frac{\partial}{\partial z}u = \frac{1}{2}\Delta u = 0.$ By Cauchy's Theorem there exists F, unique upto (complex) additive constant, such that $F' = g$. So, writing $F = U + iV + c$ (where $c \in \mathbb{C}$), that $(F - u)' = 0$ implies that $(U - u)_x = (U_u)_y = 0$, and thus $U - u = \alpha$ for some $\alpha \in \mathbb{R}$. Absorbing this into c, we have constructed $f = F = u + iV + c$ where c is imaginary. \square

Exercise 2.D. [SSh03, 2.13] If f is holomorphic on a region Ω and for each $z_0 \in \Omega$ at least one coefficient in the power series expansion $f(z) = \sum_{n=0}^{\infty} c_n(z - z_0)^n$ is zero. Then show that f is a polynomial.

Proof. Define $S_n := \{z \in \Omega : f^{(n)}(z) = 0\}$. Since $\bigcup_{n \in \mathbb{N}} S_n = \Omega$, there is N such that S_N is uncountable. Thus, $f^{(N)}(z)$ has zeroes that accumulate, and hence is identically zero.

Exercise 2.E. [SSh03, 2.15] Suppose f is continuous and non-zero on \overline{D} and holomorphic on D such that $|f(z)| = 1$ for all $|z| = 1$. Show that f is then constant.

on $\overline{\mathbb{D}}$, f is bounded. By Liouville's theorem, f is thus constant.

Proof. Note that for any g holomorphic on $U \subset \mathbb{C}$ open, if $\phi : \mathbb{C} \to \mathbb{C}$ is the conjugation map, then $\widetilde{g}(z) := \overline{f(\overline{z})}$ is holomorphic on $\phi^{-1}(U)$. Thus, we can extend f to $|z| > 1$ by defining $f(z) := \frac{1}{f(\frac{1}{\overline{z}})}$ (that $|f| = 1$ at $|z| = 1$ condition implies that the two f's match at $|z| = 1$). Now, using Morera's theorem with rectangles (and continuity of f), we have that f is entire, and since f was non-zero

10 CHRISTOPHER EUR

3. Meromorphic Functions and the Logarithm

3.1. Zeroes, singularities, meromorphic functions.

Definition 3.2. A point $z_0 \in \mathbb{C}$ is a (point/isolated singularity of f if f is defined in a neighborhood of z_0 but not at z_0 .

There are three types of point singularities: removable, poles, and essential singularities.

Theorem 3.3. Suppose f is analytic on $\Omega \setminus \{z_0\}$. Then f can be extended to analytic function on Ω if and only if $\lim_{z\to z_0}(z-z_0)f(z)=0$ (i.e. f is bounded on a neighborhood of z_0), and the extension is unique.

Proof. By Proposition 2.7, we have that $f(z) = \frac{1}{2\pi i} \int_C$ $f(\zeta)$ $\frac{f(\zeta)}{\zeta-z}d\zeta$ is valid for $z\neq z_0$ for a circle $C\subset\Omega$ centered at z_0 , but the RHS expression is analytic inside the circle by Lemma 2.18, so extend f as the integral formula expresses.

As a result of this theorem, isolated singularities that satisfy the condition in Theorem 3.3 are called removable singularities.

Theorem 3.4 (Taylor's Theorem II). If f is analytic on a region $\Omega \ni z_0$, then it is possible to write

$$
f(z) = \left(\sum_{k=0}^{n-1} \frac{f^{(k)}(z_0)}{k!} (z - z_0)^k\right) + f_n(z)(z - z_0)^n
$$

where f_n is analytic on Ω .

Proof. Apply Theorem 3.3 to $F(z) = \frac{f(z) - f(z_0)}{z - z_0}$ for case $n = 1$, and induct using the same idea. \Box

Theorem 3.5. If f is analytic on a region Ω , does not vanish identically on Ω , and $f(z_0) = 0$, then there exists $g(z)$ analytic on Ω and nonzero in a neighborhood of z_0 , and a unique n, such that

$$
f(z) = (z - z_0)^n g(z)
$$

(in which case, we say z_0 is a zero of order n).

Definition 3.6. A function f has a **pole** at z_0 if $1/f$, defined to be 0 at z_0 , is analytic in a neighborhood of z_0 . Equivalently, z_0 is a pole of f if $\lim_{z\to z_0} f(z) = \infty$.

Theorem 3.7. If f has a pole at z_0 , then there exists h holomorphic and nonzero on a neighborhood of z_0 , and a unique n, such that

$$
f(z) = (z - z_0)^{-n}h(z)
$$

(in which case, z_0 is a pole of **order/multiplicity** n).

Corollary 3.8. If f has a pole of order n at z_0 , then

$$
f(z) = \frac{a_{-n}}{(z - z_0)^n} + \dots + \frac{a_{-1}}{z - z_0} + G(z)
$$

where $G(z)$ is holomorphic on a neighborhood of z_0 .

Theorem 3.9 (Casorati-Weierstrass). Suppose f is holomorphic on a neighborhood of z_0 but not on z_0 , which is an **essential singularity** (point singularity that is neither removable or a pole). Then the image of any (punctured) neighborhood of z_0 under f is dense in \mathbb{C} .

Proof. Let D be a small disk around z_0 , and suppose there exists w with $r > 0$ such that $D_r(w) \cap$ $f(D) = \emptyset$. Now, consider the function $g(z) := \frac{1}{f(z)-w}$. Note that $g(z)$ is bounded on D, and hence has a removable singularity at z_0 . If $g(z_0) \neq 0$, then f has removable singularity at z_0 , and if $g(z_0) = 0$, then $f(z) - w$ has a pole at z_0 , which means $f(z)$ has a pole at z_0 . Either case, we get a contradiction.

Definition 3.10. If f is holomorphic on an unbounded region, we say that f has a removable/pole/essential singularity at ∞ if $F(z) := f(1/z)$ has the corresponding singularity at $z=0.$

Definition 3.11. A function f is **meromorphic** on an open set Ω if it is holomorphic on Ω except for a discrete set of points which are poles of f.

Theorem 3.12. The meromorphic functions on $\hat{\mathbb{C}}$ are the rational functions.

Proof. Given f meromorphic on $\hat{\mathbb{C}}$, subtract off principal part of f at each poles to get a bounded holomorphic function on \mathbb{C} , which must be constant holomorphic function on C, which must be constant.

3.13. The calculus of residues.

Definition 3.14. Suppose f has a pole of order n at z_0 , so that by Corollary 3.8 we can write $f(z) = \frac{a_{-n}}{z}$ $\frac{a_{-n}}{(z-z_0)^n} + \cdots + \frac{a_{-1}}{z-z_0}$ $z - z_0$ + $G(z)$. We call the $\frac{a_{-n}}{(z-z_0)^n} + \cdots + \frac{a_{-1}}{z-z_0}$ $\frac{a_{-1}}{z-z_0}$ part the **principal part** of f at pole z_0 , and define the **residue** of f at pole z_0 as $\text{Res}_{z_0} f := a_{-1}$.

Proposition 3.15. If f has a pole of order n at z_0 , then

$$
\operatorname{Res}_{z_0} f = \lim_{z \to z_0} \frac{1}{(n-1)!} \left(\frac{\partial}{\partial z}\right)^{n-1} (z - z_0)^n f(z)
$$

Theorem 3.16 (Residue formula). Let f be analytic on a region Ω except for poles $z_1, \ldots, z_N \in \Omega$. Then, for any cycle $\gamma \sim 0 \in H_1(\Omega)$ and not passing through any of z_j 's, we have

$$
\frac{1}{2\pi i} \int_{\gamma} f dz = \sum_{j=1}^{N} n(\gamma, z_j) \operatorname{Res}_{z_j} f
$$

In particular, if γ is a toy-contour in Ω containing z_1, \ldots, z_N , then we have

$$
\int_{\gamma} f dz = 2\pi i \sum_{j=1}^{N} \text{Res}_{z_j} f
$$

Proof. Note that $\gamma \sim 0$ in Ω implies that $\gamma \sim \sum_{j=1}^{N} n(\gamma, z_j) C_j$ in $\Omega \setminus z_1, \ldots, z_N$ for some circles C_j centered at z_j . For each C_j use Corollary 3.8.

Example 3.17. [Ahl79, 4.5.3] One can show (in increasing generalities) that for a rational function $R(x)$ such that $R(\infty) = 0$ and poles on the real line are simple, we get

$$
\int_{-\infty}^{\infty} R(x)e^{ix} = 2\pi i \sum_{y>0} \text{Res}_y R(z)e^{iz} + \pi i \sum_{y=0} \text{Res}_y R(z)e^{iz}
$$

3.18. The argument principle & applications.

Theorem 3.19 (Argument principle). Suppose f is meromorphic on an open Ω with zeroes $\{a_i\}$ and poles $\{b_k\}$ (repeated to each order), and γ is a cycle such that $\gamma \sim 0 \in H_1(\Omega)$ and does not go through zeroes or poles of f. Then

$$
\frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z)} dz = \sum_{j} n(\gamma, a_j) - \sum_{k} n(\gamma, b_k)
$$

Proof. Apply the residue formula (Theorem 3.16) to f'/f . $\mathcal{O}(f)$.

Corollary 3.20. If f is meromorphic on an open set containing a circle C and its interior, and f has no zeroes or poles on C, then

$$
\frac{1}{2\pi i} \int_C \frac{f'(z)}{f(z)} dz = \text{(number of zeroes inside } C) - \text{(number of poles inside } C)
$$

where the zeros and poles are counted with multiplicity.

Theorem 3.21 (Rouche's theorem). If f and g are holomorphic on an open set containing a circle C and its interior, and $|f(z)| > |g(z)|$ for all $z \in C$, then f and $f + g$ have the same number of zeros in C.

Proof. Define $f_t(z) = f(z) + tg(z)$ for $t \in [0,1]$, which is continuous jointly in t, z. Note that $|f(z)| > |g(z)|$ implies that $f_t(z) \neq 0$ for all t in a neighborhood of C. Thus, we can define

$$
n_t := \frac{1}{2\pi i} \int_C \frac{f'_t(z)}{f_t(z)} dz
$$

Since n_t is continuous in t, it must be constant, and hence $n_0 = n_1$, as desired.

Theorem 3.22 (open mapping theorem). If f is holomorphic and non-constant on Ω , then f is open.

Proof. Fix arbitrary z_0 and let $w_0 := f(z_0)$. Choose $\delta > 0$ such that $B_{\delta}(z_0) \subset \Omega$ and $f(z) \neq w_0$ on $|z - z_0| = \delta$, and $\epsilon > 0$ such that $|f(z) - w_0| \ge \epsilon$ on $|z - z_0| = \delta$. Now, note that for any w such that $|w - w_0| < \epsilon$, by Rouche's theorem we have that $g(z) := f(z) - w = (f(z) - w_0) + (w_0 - w) =$ $F(z) + G(z)$ has a root in $|z - z_0| < \delta$.

Theorem 3.23 (maximum modulus principle). If f is holomorphic and non-constant on a region Ω , then f cannot attain a maximum (i.e. maximum in modulus $|f(z)|$) in Ω .

Proof. If $|f(z_0)|$ is max, then consider $f(D)$ where D is a small disk around z_0 , which is open. \Box

Corollary 3.24. Suppose Ω is a region with compact closure Ω . If f is holomorphic on Ω and continuous on Ω , then

$$
\sup_{z \in \Omega} |f(z)| \le \sup_{\overline{\Omega} - \Omega} |f(z)|
$$

3.25. Complex logarithm.

Proposition 3.26. Suppose Ω is simply connected with $1 \in \Omega$ and $0 \notin \Omega$. Then in Ω there is a branch of the logarithm $F(z) = \log z$ such that F is holomorphic on Ω , $e^{F(z)} = z$ for all $z \in \Omega$, and $F(r) = \log r$ whenever r is real number near 1.

Example 3.27. In the split plane $\Omega = \mathbb{C} - \{(-\infty, 0]\}$, we have the principal branch $\log z =$ $\log r + i\theta$ where $|\theta| < \pi$. For $\alpha \in \mathbb{C}$, z^{α} is defined as $z^{\alpha} := e^{\alpha \log z}$ on Ω

Theorem 3.28. If f is nowhere vanishing holomorphic on simply connected region Ω , then there exists g holomorphic on Ω such that

$$
f(z) = e^{g(z)}
$$

(*i.e.* $g(z) = \log f(z)$).

Proof. Fixing $z_0 \in \Omega$, define $g(z) = \int_{\gamma}$ $f'(\zeta)$ $\frac{f'(\zeta)}{f(\zeta)}d\zeta + c_0$ for γ path from z_0 to z and $e^{c_0} = f(z_0)$.

3.29. Exercises.

Exercise 3.A. [SSh03, 3.1] Show that the complex zeros of $\sin \pi z$ are exactly at the integers, and are each of order 1. Calculate the residue of $1/\sin \pi x$ are $z = n \in \mathbb{Z}$.

Solution. Since $\sin \pi z = \frac{e^{i\pi z} - e^{-i\pi z}}{2i}$ $\frac{-e^{-i\pi z}}{2i}$, we have that $\sin \pi x = 0 \implies e^{i2\pi z} = 1$, and writing $z = x + iy$, one obtains $e^{i2\pi x}e^{-2\pi y} = 1$, so that $y = 0$ and $x = n \in \mathbb{Z}$. Power series expanding sin πz at $n \in \mathbb{Z}$ gives $\sum_{k=1}^{\infty} \pi(z-n) - \frac{\pi^3}{3!}(z-n)^3 + \cdots$ if n is even, and the opposite if n is odd. Hence, the zeros are of order 1, and the residues for $1/\sin \pi z$ are $1/\pi$ for n even and $-1/\pi$ for n odd. \square

Exercise 3.B. [SSh03, 3.6] Show that for $n \geq 1$,

$$
\int_{-\infty}^{\infty} \frac{dx}{(1+x^2)^{n+1}} = \frac{(2n)!}{4^n (n!)^2} \pi
$$

Proof. Note that $f(z) := \frac{1}{(1+z^2)^{n+1}}$ has poles i and $-i$ of order $n+1$. So, [above integral equals $2\pi i \operatorname{Res}_i f = \lim_{z \to i} \frac{1}{n}$ $\frac{1}{n!}(\frac{\partial}{\partial z})^n \frac{(z-i)^{n+1}}{(1+z^2)^{n+1}}$ $\frac{(z-i)^{n+1}}{(1+z^2)^{n+1}} = 2\pi i \frac{(2n)!}{(n!)^2}$ $(-1)^n$ $\frac{(-1)^n}{(2i)^{2n+1}} = \frac{(2n)!}{4^n (n!)^2} \pi.$

Exercise 3.C. [SSh03, 3.8] Prove that

$$
\int_0^{2\pi} \frac{d\theta}{a + b\cos\theta} = \frac{2\pi}{\sqrt{a^2 - b^2}}
$$

Proof. Letting $z = e^{i\theta}$, we can rewrite the integral as (where C is unit circle)

$$
\int_C \frac{1}{a+b \cdot \frac{1}{2}(z+\frac{1}{z})} \frac{dz}{iz} = 2\pi i \operatorname{Res}_{z_0 \in \mathbb{D}} f
$$

which gives us the desired result. \Box

Exercise 3.D. [SSh03, 3.10] Show that for $a > 0$,

$$
\int_0^\infty \frac{\log x}{x^2 + a^2} dx = \frac{\pi}{2a} \log a
$$

Proof. Define $\log z$ on $\mathbb{C} - \{(0, y) : y \le 0\}$ by $\log z = \log |z| + i\theta$ where $\theta \in (-\pi/2, 3\pi/2)$. Using the dented semicircle γ as the contour, and noting that $\frac{r \log r}{r^2 + a^2} \to 0$ as $r \to 0$ or $r \to \infty$, one computes that

$$
2\pi i \cdot \frac{\log(ia)}{2ia} = \int_{\gamma} \frac{\log z}{z^2 + a^2} dz = \int_{-\infty}^{0} \frac{\log(-x) + i\pi}{x^2 + a^2} dx + \int_{0}^{\infty} \frac{\log x}{x^2 + a^2} dx
$$

have $\frac{\pi \log a}{\pi} + \frac{i\pi^2}{a^2} = 2 \int_{-\infty}^{\infty} \frac{\log x}{x^2 + a^2} + \frac{i\pi^2}{a^2}$, and the desired equality follows.

and thus we have $\frac{\log a}{a} + \frac{i\pi^2}{2a} = 2 \int_0^\infty$ $rac{\log x}{x^2+a^2} + \frac{i\pi^2}{2a}$ $\frac{2\pi^2}{2a}$, and the desired equality follows.

Exercise 3.E. [SSh03, 3.14] Prove that all entire functions that are also injective take the form $f(z) = az + b$ with $a, b \in \mathbb{C}$ and $a \neq 0$.

Proof. If f is meromorphic on $\hat{\mathbb{C}}$, then f is a rational function, but since f entire, it is a polynomial and injectivity implies that f is then linear. If f has essential singularity at infinity, then $f(\mathbb{C}\setminus\mathbb{D})$ must be dense in $\mathbb C$, but then since f is an open map, $f(\mathbb C\setminus\mathbb D)\cap f(\mathbb D)\neq\emptyset$, and hence injectivity implies that f cannot have essential singularity at infinity. \Box

Exercise 3.F. [SSh03, 3.15] Prove the following statements:

- (1) If f is an entire function satisfying $\sup_{|z|=R} |f(z)| \leq AR^k + B$ for some $A, B \geq 0$ and $k \in \mathbb{N}$, then f is polynomial of degree $\leq k$.
- (2) If f is holomorphic on \mathbb{D} , is bounded, and converges uniformly to zero in the sector θ $\arg z < \phi \text{ as } |z| \to 1, \text{ then } f = 0.$
- (3) Let w_1, \ldots, w_n be on the unit circle C. Then $\exists z \in C$ such that $|z-w_1| \cdots |z-w_n| = 1$.

 (4) If the real part of an entire function f is bounded, then f is constant.

Proof.

- (1) Cauchy inequality implies that $f^{(n)}(0) = 0$ for all $n > k$.
- (2) ASK
- (3) Note that $C \to \mathbb{R}$ given by $z \mapsto |z-w_1| \cdots |z-w_n|$ is continuous, so it suffices to show that for some $z \in C$, $|z - w_1| \cdots |z - w_n| \ge 1$. Well, $(z - w_1) \cdots (z - w_n)$ is holomorphic on \mathbb{D} , then achieves modulus 1 when $z = 0$, so the maximum principle gives us the desired $z \in C$.
- (4) If f has essential singularity at infinity, then the real part is not bounded by Casorati-Weierstrass. But if f is meromorphic, then f is a polynomial and hence is constant.

 \Box

Exercise 3.G. [SSh03, 3.16] Suppose f and g are holomorphic on a region containing \mathbb{D} , and suppose f has a simple zero at $z = 0$ with no other zeroes on \overline{D} . Then $f_{\epsilon}(z) = f(z) + \epsilon g(z)$ has a unique zero in \overline{D} for ϵ sufficiently small, and if z_{ϵ} is the zero of f_{ϵ} , then $\epsilon \mapsto z_{\epsilon}$ is continuous.

Proof. For a small enough $\epsilon > 0$, we have $\inf_{|z|=1} |f| > \epsilon \sup_{|z|=1} |g|$, so that by Rouche's theorem f_{ϵ} has a unique zero in \mathbb{D} . Moreover, let $\{\delta_n\}$ sequence of numbers converging to $\delta < \epsilon$. We need show that $z_{\delta_n} \to z_{\delta}$. Well, if $\{z_{\delta_n}\}\subset \overline{\mathbb{D}}$ does not converge to z_{δ} then it has a subsequence that converges to some $w \neq z_{\delta}$. But since $F : \overline{\mathbb{D}} \times \mathbb{R} \to \mathbb{C}$ defined as $F(z, \epsilon) := f_{\epsilon}(z)$ is continuous, and $(\delta_n, z_{\delta_n}) \to (\delta, w)$, we have $f_{\delta}(w) = F(w, \delta) = 0$, which contradicts uniqueness of the zero of f_{δ} .

Exercise 3.H. [SSh03, 3.17] Let f be non-constant and holomorphic on an open set containing \mathbb{D} . Iff $|f(z)| = 1$ on $|z| = 1$, or if $|f(z)| \ge 1$ on $|z| = 1$ and there exists $z \in \mathbb{D}$ such that $|f(z_0)| < 1$, then the image of f contains the unit disk.

Proof. In both cases, by Rouche's theorem $f(z) = w$ has a root for every $w \in \mathbb{D}$ if $f(z) = 0$ has a root. But if $f(z) = 0$ has no root, then $1/f$ defined on \overline{D} achieves its maximum in the interior D (by maximum principle for the first case, obvious in the second case).

Exercise 3.I. [SSh03, 3.19] Prove the maximum principle for harmonic functions.

Proof. Suppose an harmonic function u defined on an open set Ω achieves a local maximum M at $z_0 \in \Omega$. We know that there exists a holomorphic function f on Ω such that $\text{Re}(f) = u$. Then f is not open since $f(z_0) = M + ib$, and no neighborhood of $M + ib$ is contained in the image $f(D)$ where D is a small neighborhood of z_0 .

Exercise 3.J (Laurent Series Expansion). [SSh03, Problem 3.3] Suppose f is analytic on a region containing the annulus $\{r_1 \leq |z - z_0| \leq r_2\}$. Then, we can write (uniquely)

$$
f(z) = \sum_{n = -\infty}^{\infty} a_n (z - z_0)^n
$$

where the series converges absolutely in the interior of the annulus.

Proof. By Theorem 2.14, one can write

$$
f(z) = \frac{1}{2\pi i} \int_{C_{r_1}} \frac{f(\zeta)}{\zeta - z} d\zeta - \frac{1}{2\pi i} \int_{C_{r_2}} \frac{f(\zeta)}{\zeta - z} d\zeta
$$

and use the series expansion of $1/(\zeta - z) = \frac{1}{(\zeta - z_0) - (z - z_0)}$ appropriately in each case.

4. Conformal Maps

4.1. Conformal equivalence and examples.

Proposition 4.2. If $f: U \to V$ for $U, V \subset \mathbb{C}$ open is holomorphic and injective, then $f'(z_0) \neq 0$ for all $z_0 \in U$. Moreover, as a result the inverse of f defined on its image is holomorphic.

Proof. Write $f(z) - f(z_0) = a_k(z - z_0)^k + [(z - z_0)^{k+1}]$ and use Rouche's theorem to conclude that $f(z) - f(z_0)$ is not injective. Second part follows: $(f^{-1})'(f(z_0)) = \frac{1}{f'(z_0)}$.

Definition 4.3. A map holomorphic map $f: U \to V$ with $f'(z_0) \neq 0 \ \forall z_0 \in U$ is called **conformal map.** If f is bijective, then it is called a **biholomorphism** (note that its inverse is also holomorphic), in which we say U, V are **conformally equivalent**.

Example 4.4. Translations $z \mapsto z+a$ and rotation+dilation given by $z \mapsto cz$, $(c \in \mathbb{C})$ are conformal equivalences $\mathbb{C} \overset{\sim}{\rightarrow} \mathbb{C}$.

Example 4.5. Let $\mathbb{H} := \{z \in \mathbb{C} : \text{Im}(z) > 0\}$ be the upper half-plane. \mathbb{H} and the unit disk \mathbb{D} are conformally equivalent. One equivalence is given by $F : \mathbb{H} \to \mathbb{D}, G : \mathbb{D} \to \mathbb{H}$ where

$$
F(z) = \frac{i - z}{i + z}, \quad G(w) = i\frac{1 - w}{1 + w}
$$

Example 4.6. For $0 < \alpha < 2$, the map $f(z) = z^{\alpha}$ defined in terms of the principal branch is a biholomorphic map from $\mathbb H$ to the sector $S = \{w \in \mathbb C : 0 < \arg(w) < \alpha \pi\}.$

Example 4.7. The map $f(z) = \log z$ is a biholomorphism from H to a region $\{a + bi : a \in \mathbb{R}, 0 \leq \mathbb{R}\}$ $b < \pi$. It also biholomorphically maps upper unit disk to $\{a + bi : a < 0, 0 < b < \pi\}$

4.8. The Mobius transformations.

Definition 4.9. We call maps of the following form a **Mobius transformation** $/$ (fractional) linear map:

$$
f(z) = \frac{az+b}{cz+d}
$$

for a, b, c, $d \in \mathbb{C}$ such that $ad - bc \neq 0$.

Remark 4.10. Noting the identification $\mathbb{CP}^1 \simeq \widehat{\mathbb{C}}$, we see that a Mobius map computed in \mathbb{CP}^1 is $[z_1 : z_2] \rightarrow [az_1 + bz_2 : cz_1 + dz_2]$. In other words, it really is a linear transformation in homogeneous coordinates made by multiplying matrix $M = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ to $\begin{bmatrix} z_1 \\ z_2 \end{bmatrix}$ z_2 . In this view, one sees that matrices of $PSL_2(\mathbb{C})$ correspond exactly to different Mobius maps, and so a Mobius map is determined by image of three distinct points. Moreover, composition of Mobius maps corresponds to matrix multiplication. Indeed, it is thus a biholomorphic map $\hat{\mathbb{C}} \stackrel{\sim}{\rightarrow} \hat{\mathbb{C}}$. Moreover,

Proposition 4.11. Given three distinct points $z_2, z_3, z_4 \in \mathbb{C}$, the Mobius map T that maps z_2, z_3, z_4 to 1,0, ∞ , respectively, is given by

$$
f(z) = \frac{(z - z_3)(z_2 - z_4)}{(z - z_4)(z_2 - z_3)}
$$

(if z_2, z_3 , or $z_4 = \infty$, just cancel the terms with it). We denote the above $f(z)$ by (z, z_2, z_3, z_4) called the cross ratio.

Theorem 4.12. For distinct points $z_1, z_2, z_3, z_4 \in \widehat{\mathbb{C}}$ and T a Mobius map, $(Tz_1, Tz_2, Tz_3, Tz_4) =$ (z_1, z_2, z_3, z_4) . And hence, T that maps z_2, z_3, z_4 to w_2, w_3, w_3 is obtained by writing (w, w_2, w_3, w_4) = (z, z_2, z_3, z_4) and solving for w.

Example 4.13. Fractional linear map gives us abundance of biholomorphism, especially when we use them to rotate the Riemann sphere. The map $z \mapsto (z, i, 1, -1) = \frac{(z-1)(i+1)}{(z+1)(i-1)} = i\frac{1-z}{1+z}$ $\frac{1-z}{1+z}$ is the map $G: \mathbb{D} \to \mathbb{H}$ in Example 4.5. In another case, $z \mapsto (z, 0, -1, 1) = \frac{(z+1)(-1)}{(z-1)(1)} = \frac{1+z}{z-1}$ maps upper half-disk to the first quadrant.

4.14. The Schwarz lemma and $Aut(\mathbb{D})$, $Aut(\mathbb{H})$.

Proposition 4.15 (Schwarz Lemma). Let $f : \mathbb{D} \to \mathbb{D}$ be holomorphic with $f(0) = 0$. Then $|f(z)| \le$ |z| for all $z \in \mathbb{D}$, and if equality occurs at $z_0 \in \mathbb{D}$, then f is a rotation. Moreover, $|f'(0)| \leq 1$, and if equal then f is a rotation.

Proof. Consider the holomorphic function $\frac{f(z)}{z}$ and use the maximum principle.

Definition 4.16. For a open set $\Omega \subset \mathbb{C}$, an **automorphism** of Ω is a biholomorphic map $f : \Omega \to$ Ω . Automorphisms of Ω forms a group Aut (Ω) .

Example 4.17. In [SSh03, Exercise 3.14], we proved that $Aut(\mathbb{C}) = \{z \mapsto az + b : a, b \in \mathbb{C}, a \neq 0\}.$

Theorem 4.18. Automorphisms of D are exactly the maps

$$
f(z) = e^{i\theta} \frac{\alpha - z}{1 - \overline{\alpha}z}
$$

where $\theta \in \mathbb{R}$ and $\alpha \in \mathbb{D}$.

Proof. Note that the map $\varphi_{\alpha}(z) := \frac{\alpha - z}{1 - \overline{\alpha}z}$ is a biholomorphism $\mathbb{D} \to \mathbb{D}$ that exchanges 0 and α , and φ_{α} is its own inverse. Now, suppose $f \in Aut(\mathbb{D})$ and $f(0) = \alpha$. Consider $g = f \circ \varphi_{\alpha}$, which biholomorphically maps $\mathbb{D} \to \mathbb{D}$ and $g(0) = 0$. By Schwarz lemma on both g and g^{-1} , we get $|g(z)| = |z|$ for $z \in \mathbb{D}$, and hence g is a rotation $g = e^{i\theta}$. But then $f = g \circ \varphi_\alpha$.

Corollary 4.19. Automorphisms of D that fix the origin are the rotations.

Theorem 4.20. Automorphisms of \mathbb{H} are exactly of the form

$$
z \mapsto \frac{az+b}{cz+d}
$$

where $a, b, c, d \in \mathbb{R}$ such that $ad - bc = 1$. In other words, we have an isomorphism

$$
\mathrm{Aut}(\mathbb{H})\simeq PSL_2(\mathbb{R})
$$

Proof. Let $F : \mathbb{H} \to \mathbb{D}$ be a biholomorphism. Note the isomorphism $Aut(\mathbb{D}) \stackrel{\sim}{\to} Aut(\mathbb{H})$ via $f \mapsto$ $F^{-1} \circ f \circ F$. Then, the previous theorem and computation yields the desired result.

Remark 4.21. Note that $Aut(\mathbb{D})$, $Aut(\mathbb{H})$ act transitively on \mathbb{D} , \mathbb{H} (respectively), but not faithfully.

4.22. The Riemann mapping theorem.

Before stating and proving the Riemann mapping theorem and its proof, we consider some metric topological matters.

Given a metric space (X, d) , X is **totally bounded** if X can be covered by finitely many ϵ -balls for any given $\epsilon > 0$. It is well-known that

A metric space X is compact iff it is complete and totally bounded

Given a metric space (Y, d) and X a set, we can define a metric on Y^X by

$$
\rho(f,g) := \begin{cases} \sup_{x \in X} d(f(x), g(x)) \\ 1 \text{ if } \sup > 1 \end{cases}
$$

This is the **uniform topology** on Y^X ; convergence in this metric is exactly uniform convergence of functions. Hence, we know that $C(X, Y) \subset Y^X$ is closed. Moreover, note the fact that Y^X is

complete if Y is complete. Note that unit-ball in $C(X,Y)$ is not compact; e.g. $\{x^n\}_n \subset C([0,1])$ is not sequentially compact. For K a compact metric space, a family of functions $\mathscr{F} \in C(K)$ is uniformly bounded if there exists M such that $|f| \leq M \,\forall f \in \mathscr{F}$, and \mathscr{F} is equicontinuous if for any $\epsilon > 0$ there exists $\delta > 0$ such that $|f(x) - f(y)| < \epsilon$ whenever $x, y \in K$, $d(x, y) < \delta$ and $f \in \mathscr{F}$.

Theorem 4.23 (Arzela-Ascoli). Let K is a compact metric space. If a family of functions $\mathcal{F} \subset$ $C(K)$ is equicontinuous and uniformly bounded, then $\overline{\mathscr{F}}$ is compact.

In complex analysis, a related notion to a family of functions being compact is the following:

Definition 4.24. Let $\Omega \subset \mathbb{C}$ be open, and \mathscr{F} be a family of holomorphic functions on Ω . \mathscr{F} is **normal** if every sequence in $\mathcal F$ has a subsequence that converges uniformly on every compact subset of Ω (limit need not be in \mathscr{F}).

Theorem 4.25 (Montel's theorem). Let $\mathcal F$ be a family of holomorphic functions on Ω . If $\mathcal F$ is uniformly bounded on every compact subset of Ω , then $\mathscr F$ is equicontinuous on every compact subset of Ω , and hence $\mathscr F$ is a normal family.

Proof. Note that if $|f'|$ is bounded, then f is Lipschitz cotninuous, so use Cauchy integral formula and that $\mathscr F$ is uniformly bounded to show that $|f'(z)| \leq M$ for all $f \in \mathscr F$ and $z \in \Omega$. This show $\mathscr F$ equicontinuous. Then use Arzela-Ascoli theorem with exhaustion of Ω by compact sets to show normal.

Proposition 4.26. If Ω is a region and $\{f_n\}$ a sequence of injective holomorphic functions on Ω that converges uniformly to a holomorphic function f on every compact subset of Ω , then f is either injective or constant.

Proof. If $f(z_1) = f(z_2)$, then consider the sequence $g_n(z) := f_n(z) - f(z_1)$. Note that $g_n \to g :=$ $f(z) - f(z_1)$ uniformly on all compact subsets and so does $g'_n \to g'$. Thus, for a small circle around z_2 , we must have $0 = \frac{1}{2\pi i} \int_C$ $g'_n(z)$ $\frac{g_n'(z)}{g_n(z)}dz=\frac{1}{2\pi}$ $\frac{1}{2\pi i}\int_C$ $g'(z)$ $\frac{g'(z)}{g(z)}dz = 1$, which is a contradiction.

Theorem 4.27 (Riemann mapping theorem). If $\Omega \subset \mathbb{C}$ is proper and simply-connected region, then for $z_0 \in \Omega$, there exists a unique biholomorphism $F: \Omega \to \overline{\mathbb{D}}$ such that $F(z_0) = 0$ and $F'(z_0) > 0$.

Proof. TODO

4.28. Exercises.

Exercise 4.A. [SSh03, 8.10] Let $F : \mathbb{H} \to \mathbb{C}$ be a holomorphic function satisfying $|F(z)| \leq 1$ and $F(i) = 0$. Then show that $|F(z)| \leq \left|\frac{i-z}{i+z}\right|$.

Proof. Note that $G : \mathbb{H} \to \mathbb{D}$ defined by $G(z) := \frac{i-z}{i+z}$ and $G^{-1}(w) = i\frac{1-w}{1+w}$ $\frac{1-w}{1+w}$ is a conformal equivalence. Define $H : \mathbb{D} \to \mathbb{D}$ by $H := F \circ G^{-1} : \mathbb{D} \to \mathbb{C}$. Since H maps $\mathbb{D} \to \mathbb{D}$ and $H(0) = 0$, by the Schwarz lemma we have $|H(w)| \le |w|$ for all $w \in \mathbb{D}$. In other words, $|F(G^{-1}(w))| \le |G(G^{-1}(w))|$, and thus $|F(z)| \leq |z|$ for $z \in \mathbb{H}$.

Exercise 4.B. [SSh03, 8.12] If $f : \mathbb{D} \to \mathbb{D}$ is analytic and has two distinct fixed points, then f is the identity (i.e. $f(z) = z$).

Proof. Suppose $\alpha, \beta \in \mathbb{D}$ are two distinct fixed points. Consider the biholomorphism $\phi_{\alpha}(z) := \frac{\alpha - z}{1 - \overline{\alpha}z}$, which satisfies $\phi_{\alpha}(0) = \alpha$ and $\phi_{\alpha}(\beta) = \beta'$ (note $\phi_{\alpha}(\beta') = \beta$). Now, consider the map $g := \phi_{\alpha} \circ f \circ \phi_{\alpha}$: $\mathbb{D} \to \mathbb{D}$, which has fixed points 0 and β' . By the Schwarz lemma, g is a rotation that fixes a nonzero point, and hence identity, and thus f is also identity.

$$
\Box
$$

Exercise 4.C. [SSh03, 8.14] Show that all biholomorphic maps $\mathbb{H} \to \mathbb{D}$ take the form

$$
z \mapsto e^{i\theta} \frac{z - \beta}{z - \overline{\beta}}, \quad \theta \in \mathbb{R}, \ \beta \in \mathbb{H}
$$

Proof. Any biholomorphism $f : \mathbb{H} \to \mathbb{D}$ factors through as $f = (f \circ F^{-1}) \circ F$ where $F : \mathbb{H} \to \mathbb{D}$ is a biholomorphism $z \mapsto \frac{i-z}{i+z}$ and $f \circ F^{-1} \in \text{Aut}(\mathbb{D})$ is of the form $z \mapsto e^{i\theta} \frac{\alpha-z}{1-\overline{\alpha}z}$ for $\theta \in \mathbb{R}, \ \alpha \in \mathbb{D}$. Now, computing the composition of the Mobius transformation

$$
e^{i\theta} \begin{bmatrix} -1 & \alpha \\ -\overline{\alpha} & 1 \end{bmatrix} \begin{bmatrix} -1 & i \\ 1 & i \end{bmatrix} = e^{i\theta} \begin{bmatrix} \alpha+1 & i(\alpha-1) \\ \overline{\alpha}+1 & i(1-\overline{\alpha}) \end{bmatrix}
$$

which factors as

$$
e^{i\theta} \begin{bmatrix} \alpha+1 & 0 \\ 0 & \overline{\alpha}+1 \end{bmatrix} \begin{bmatrix} 1 & -\beta \\ 1 & -\overline{\beta} \end{bmatrix}
$$

where $\beta = i \frac{1-\alpha}{1+\alpha} = F^{-1}(\alpha)$. Since $|\alpha + 1| = |\overline{\alpha} + 1|$, the left matrix also rotation Mobius map. Hence, for some θ' and $\beta \in \mathbb{H}$ as defined, $f(z) = e^{i\theta' \frac{z-\beta}{z-\beta}}$ $\frac{z-\beta}{z-\beta}$, as desired.

Exercise 4.D. [SSh03, 8.15] Suppose $\Phi \in \text{Aut}(\mathbb{H})$ that fixes three distinct points on the real axis, then Φ is identity. If (x, y, z) and (x', y', z') are two pairs of three distinct points on the real axis with $z_1 < z_2 < z_3$, $w_1 < w_2 < w_3$, then there exists a unique automorphism $\Phi \in \text{Aut}(\mathbb{H})$ such that $\Phi(x_i) = w_i$. Same holds if $w_2 < w_3 < w_1$ or $w_3 < w_1 < w_2$.

Proof. Aut(\mathbb{H}) ⊂ Aut($\hat{\mathbb{C}}$) as $PSL_2(\mathbb{R})$ ⊂ $PSL_2(\mathbb{C})$. Thus, since a Mobius transformation is determined by images of three distinct points, the first statement follows. Now, for the second statement, writing $(z, z_1, z_2, z_3) = (w, w_1, w_2, w_3)$ and solving for w gives a Mobius transformation $\frac{az+b}{cz+d}$ for some $a, b, c, d \in \mathbb{R}$ mapping z_1, z_2, z_3 to w_1, w_2, w_3 , and with (a lot of) computation, one checks that $ad - bc > 0$ (so that $\begin{bmatrix} a & b \\ c & d \end{bmatrix} \in PSL_2(\mathbb{R})$) exactly when w_i 's are ordered as given.

Exercise 4.E. [SSh03, Problem 8.2] The **oriented angle** of $z, w \in \mathbb{C}$ is determined by two quantities

$$
\frac{\langle z, w \rangle}{|z||w|}
$$
 and
$$
\frac{\langle z, -iw \rangle}{|z||w|}
$$
, where $\langle z, w \rangle = \text{Re}(w\overline{z})$

An oriented angle of two intersecting curves at the intersection is defined as the angle of two tangent vectors at the intersection. A map $f : \Omega \to \mathbb{C}$ is **angle-preserving at** $z_0 \in \Omega$ if for any two curves $\gamma, \eta \subset \Omega$ intersecting at z₀, the (oriented) angle of γ, η at z₀ and the angle of $f \circ \gamma, f \circ \eta$ at $f(z_0)$ are the same. Show that:

- (1) If $f : \Omega \to \mathbb{C}$ is holomorphic with $f(z_0) \neq 0$, then f is angle-preserving at z_0 .
- (2) Conversely, if $f : \Omega \to \mathbb{C}$ is real-differentiable at z_0 with $J_f(z_0) \neq 0$ and is angle-preserving, then f is holomorphic at z_0 .

Proof. (1) is easy, for if $\gamma(t_0) = z_0$ and $\eta(s_0) = z_0$, then $(f \circ \gamma)'(t_0) = f'(z_0)\gamma'(t_0)$, $(f \circ \eta)'(t_0) = f'(z_0)\gamma'(t_0)$ $f'(z_0)\eta'(t_0)$. For the converse, by chain rule, if γ is a curve through z_0 at t_0 , then $[Df]_{z_0}\gamma'(t_0) = (f \circ$ $\gamma'(t_0)$. Since the matrix $M := [Df]_{z_0}$ is such that $\langle u, v \rangle = \langle Mu, Mv \rangle$ and $\langle u, -iv \rangle = \langle Mu, M(-iv) \rangle$ for any $|u| = |v| = 1$, it is of the form $\begin{bmatrix} a & -b \\ b & a \end{bmatrix}$, which means that f satisfies the Cauchy-Riemann equation at z_0 .

REFERENCES

- [Ahl79] Ahlfors. Complex Analysis. 3rd ed. Mc-Graw Hill. 1979.
- [SSh03] Stein & Shakarchi. Complex Analysis. Princeton Lectures in Analysis II. 2003.
- [Lee13] Lee. Introduction to Smooth Manifolds. Springer. 2013.