MATH 54 SPRING 2019: DISCUSSION 109/112 QUIZ#7

GSI: CHRISTOPHER EUR, DATE: 4/9/2019

Problem 1. Find the SVD of the matrix $A = \begin{bmatrix} 2 & -1 \\ 2 & 2 \end{bmatrix}$.

Problem 2. In the above problem, find a unit vector $\vec{x} \in \mathbb{R}^2$ such that the length of $A\vec{x}$ is maximized. (If you did not do problem 1, you may suppose the SVD was $U\Sigma V^T$ where Σ is a diagonal matrix with entries $\sigma_1 > \sigma_2$, and V a matrix with columns v_1, v_2 , and U a matrix with columns u_1, u_2 , and phrase the answer in terms of those).

(#1)
$$A^{T}A = \begin{bmatrix} 2 & 2 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 2 & -1 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 8 & 2 \\ 2 & 5 \end{bmatrix}$$
, charpel: $(8 - \lambda)(5 - \lambda) - 4$
 $= \lambda^{2} - 13\lambda + 36$
 $= (\lambda - 4)(\lambda - 9) \rightarrow sing. val: 3, 2$
Eigenvec. of $A^{T}A : \lambda = 4$. $\begin{bmatrix} -1 \\ -2 \end{bmatrix}$
 $\lambda = 9$, $\begin{bmatrix} 2 & 1 \\ -2 \end{bmatrix}$
 $V = \begin{bmatrix} v_{1} & v_{2} \end{bmatrix} = \frac{1}{\sqrt{5}} \begin{bmatrix} 2 & 1 \\ 1 & -2 \end{bmatrix}$
 $A = \begin{bmatrix} v_{1} & v_{2} \end{bmatrix} = \frac{1}{\sqrt{5}} \begin{bmatrix} 2 & 1 \\ 1 & -2 \end{bmatrix}$
 $A = \begin{bmatrix} u \\ 3 \\ 2 \end{bmatrix}$
 $u \begin{bmatrix} 3 \\ 2 \end{bmatrix}$
 $u_{2} = \frac{1}{2}Av_{2} = \frac{1}{2\sqrt{5}} \begin{bmatrix} 2 \\ 8 \\ 2 \end{bmatrix}$
 $u \begin{bmatrix} 3 \\ 2 \end{bmatrix}$
 $u_{3} = \frac{1}{2}Av_{2} = \frac{1}{2\sqrt{5}} \begin{bmatrix} 4 \\ 8 \\ -2 \end{bmatrix}$
(#2) The normalized eigenvec. w/ the higher eigenval. 9 is $\int \frac{1}{\sqrt{5}} \begin{bmatrix} 2 \\ 1 \end{bmatrix}$