
MATH 54 SPRING 2019: DISCUSSION 109/112 QUIZ#6

GSI: CHRISTOPHER EUR, DATE: 4/2/2019

STUDENT NAME:

Problem 1. Let h·, ·i be an inner product on P2 given by

hp(x), q(x)i = p(�1)q(�1) + p(0)q(0) + p(1)q(1).

Compute the projection of f(x) = 3 + 2t2 onto the subspace spanned by g(x) = 3t� t2.
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5 are eigenvectors of

A, find another eigenvector v3 2 R3 of A such that {v1, v2, v3} is a basis of R3.
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( #2) A is symmetric  ⇒ a  orthogonal eigen basis

.

Since u
,

v , eigenvec . & orthogonal ( v , . v. =  - I -10+1=0 )
need find

us orthogonal to both
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( Can check Avs = IVs )
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Alternatively,

since the problem did not impose orthogonal eigen
basis

,

any vector Vs st Avs = vz and { vz
,

vs } tin . indep will do
.


