MATH 54 SPRING 2019: DISCUSSION 109/112 QUIZ#4

GSI: CHRISTOPHER EUR, DATE: 3/5/2019

 $Problem \ 1.$ Compute the characteristic polynomial of the following matrix (you do not need to factor it).

0	3	1]
3	0	2
1	2	0

Problem 2. Let A be a square matrix. Show that if A^2 is the zero matrix, then the only eigenvalue of A is 0.

(1)
$$\det \begin{bmatrix} -\lambda & 3 & 1 \\ 3 - \lambda & 2 \\ 1 & 2 - \lambda \end{bmatrix} = -\lambda (\lambda^{2} - 4) - 3(-3\lambda - 2) + (6 + \lambda)$$
$$= -\lambda^{3} + 4\lambda + 9\lambda + 6 + 6 + \lambda$$
$$= -\lambda^{3} + 14\lambda + 12$$
(2) (1) Say λ is an eigenval. of A will eigenvec. v .
 $Av = \lambda v$.
Then $v = \lambda^{2}v$.

Then
$$D = A^2 v = \lambda A v = \lambda^2 v$$
.
Since $v \neq 0$, $\lambda^2 = 0$, thus $\lambda = 0$.
(2) Now, D is an eigenvalue of A since
 $det(A^2) = (det A)^2 = 0 \Rightarrow det A = 0 \Rightarrow A$ not inutble
 $\Rightarrow \ker A \neq \{0\}$.