Quiz #3; Wed, 2/10/2016 Math 53 with Prof. Stankova Section 110; MWF11-12 GSI: Christopher Eur

Student Name: _____

Problem. Let L_1 be a line in \mathbb{R}^3 defined by the parametric equation: x = t, y = 0, z = 2. Find all pairs of numbers (z_0, c) such that the line L_2 defined by the symmetric equation $x = y = \frac{z - z_0}{c}$ meets L_1 and the two lines form an acute angle of $\pi/3$.

Solution. If the two lines intersect, we have y = 0, which by x = y means x = 0, and hence $z - z_0 = 0$ as well, but z = 2 so $z_0 = 2$. Now, for the angle, the direction vector for L_1 is $\langle 1, 0, 0 \rangle$, and so $\frac{\langle 1, 0, 0 \rangle \cdot \langle 1, 1, c \rangle}{\sqrt{1}\sqrt{1+1+c^2}} = \frac{1}{2}$ gives us $2 = c^2$ so $c = \pm\sqrt{2}$. Hence, the two pairs are $(z_0, c) = (2, \sqrt{2}), (2, -\sqrt{2}).$