21-832 PDE II Fall 2016 R.L. Pego

Homework 3 Due Wednesday, Nov. 9

1. (Evans 5.21, $H^s(\mathbb{R}^n)$ is a Banach algebra for s > n/2) Show that whenever s > n/2, there is a constant C such that for all $u, v \in H^s(\mathbb{R}^n)$,

$$||uv||_{H^s} \le C||u||_{H^s}||v||_{H^s}.$$

2. On the vector space $H = \{u \in L^6(\mathbb{R}^3) : Du \in L^2(\mathbb{R}^3)\}$ define the inner product

$$(u,v) = \int_{\mathbb{R}^3} Du \cdot Dv.$$

- (a) Prove that H is complete, thus a Hilbert space.
- (b) Let $\Omega \subset \mathbb{R}^3$ be a bounded domain with smooth boundary. Show that for any $v \in L^2(\partial\Omega)$ there is a unique $u \in H$ such that

$$\int_{\mathbb{R}^3} Du \cdot D\varphi = \int_{\partial\Omega} v\varphi \, dS$$

for all $\varphi \in H$.

(c) Suppose that v is continuous and the solution u in (b) happens to be piecewise C^1 , with $u|_{\Omega} \in C^1(\overline{\Omega})$ and $u|_{\Omega^c} \in C^1(\Omega^c)$ where $\Omega^c = \mathbb{R}^3 \setminus \Omega$. Show that then u satisfies

$$\Delta u = 0$$
 in $\mathbb{R}^3 \setminus \partial \Omega$, $[\nu \cdot Du] = v$ on $\partial \Omega$.

Here, for $x \in \partial\Omega$, $[\nu \cdot f](x) = \lim_{t\to 0^+} \nu(x) \cdot (f(x+t\nu) - f(x-t\nu))$ denotes the normal jump across $\partial\Omega$, with $\nu(x)$ the outward unit normal.

(d) Suppose $\Omega = \bigcup_{j=1}^n B_j$ is a union of non-touching balls $B_j = B(x_j, R_j)$, and $v = v_j$ is constant on ∂B_j . For all $x \in \mathbb{R}^3$, find a formula for the solution u(x) in (b), which has the form of a superposition of *monopoles* outside Ω :

$$u(x) = \sum_{i} \frac{a_j}{|x - x_j|}, \quad x \notin \Omega.$$

3. Suppose $\Omega \subset \mathbb{R}^n$ is a bounded domain with C^1 boundary. Let $J: L^2(\Omega) \hookrightarrow H^{-1}(\Omega)$ be the natural embedding, defined by

$$\langle Jf, v \rangle = \int_{\Omega} fv$$
 for $v \in H_0^1(\Omega)$.

Prove that J is compact.

4. (A nonlinear boundary-value problem) Let $\Omega \subset \mathbb{R}^n$ be a bounded domain with C^1 boundary and let $a \in \mathbb{R}$. Write an appropriate weak formulation for the boundary value problem

$$-\Delta u + a \sin u = f$$
 in Ω , $u = 0$ on $\partial \Omega$.

Using a contraction-mapping argument, prove that for |a| sufficiently small, there is a unique solution $u \in H_0^1(\Omega)$ to the weak formulation.

(Remark: The map $u \mapsto \sin(u)$ is not Frechet differentiable on $L^2(\Omega)$. Indeed, if $g : \mathbb{R} \to \mathbb{R}$ is smooth and the composition map $u \mapsto g \circ u$ is Frechet differentiable on $L^2(\Omega)$, then g must be affine!)