More induction

(1) A "toonie" is a Canadian 2$ coin. Consider the following proof that, for any integer \(n \geq 2 \), \(n \) Canadian dollars can be paid in toonies.

Base case: \(n = 2 \) can be paid with one toonie.

Induction hypothesis: suppose that for some integer \(h \geq 2 \), \(h \) Canadian dollars can be paid in toonies for any \(2 \leq i \leq h \).

Then, since \(h+1 = (h-1) + 2 \) and since, by the induction hypothesis, \(h-1 \) Canadian dollars can be paid for in toonies, we may add one toonie and pay \(h+1 \) Canadian dollars in toonies.

What is wrong with this proof?
The issue is that, if we call \(P(k) \) the statement "\(k \) Canadian dollars can be paid in toonies", then we have shown in the induction step that \(P(k-1) \Rightarrow P(k+1) \). Since we have shown, in the base case, that \(P(2) \) is true, we may deduce that \(P(k) \) holds for any even integer \(k \geq 2 \), but we know nothing about \(P(b) \) when \(b \) is odd!

2) Consider a sequence of integers \(a_n, n \in \mathbb{N} \), where \(a_1 \) and \(a_2 \) are odd and where
\[
a_n = 2a_{n-1} + 3a_{n-2} \quad \text{for any } n \geq 3.
\]
(a) Prove that \(a_n \) is odd for all \(n \in \mathbb{N} \).

We proceed by induction.

Base cases: \(n = 1, 2 \)

We know that \(a_1 \) and \(a_2 \) are odd by assumption.
Induction step:

Let k be some integer with $k \geq 2$ and suppose that a_i is odd for every integer $i=1,\ldots,k$.

In particular, a_2 and a_{k-1} are odd so there exist $x, y \in \mathbb{Z}$ such that $a_2 = 2x + 1$ and $a_{k-1} = 2y + 1$. Therefore:

\[
\begin{align*}
a_{k+1} &= 2a_2 + 3a_{k-1} \\
&= 2(2x+1) + 3(2y+1) \\
&= 4x + 6y + 5 \\
&= 2(2x+3y+2) + 1
\end{align*}
\]

i.e. indeed a_{k+1} is odd.

We have thus proven by induction that a_n is odd for every $n \in \mathbb{N}$.

(b) Suppose now that $a_1 = a_2 = 1$. Prove that

\[a_n = \frac{1}{2} (3^{n-1} - (-1)^n)\]

for every $n \in \mathbb{N}$.

We proceed by induction.
Base cases: \(m = 1, 2 \)

Observe that indeed
\[
\begin{align*}
a_1 &= \frac{1}{2} (1+1) = \frac{1}{2} \left(3^0 - (-1)^1 \right) \\
a_2 &= \frac{1}{2} (3-1) = \frac{1}{2} \left(3^1 - (-1)^2 \right)
\end{align*}
\]

Induction step:
Let \(b \in \mathbb{N} \) be some integer with \(b \geq 2 \) and suppose that \(a_x = \frac{1}{2} \left(3^{x-1} - (-1)^x \right) \) for every \(x = 1, \ldots, b \).

Then \(a_{b+1} = 2a_b + 3a_{b-1} \)
\[
= 2 \cdot \frac{1}{2} \left(3^{b-1} - (-1)^b \right) + 3 \cdot \frac{1}{2} \left(3^{b-2} - (-1)^{b-1} \right)
\]
by the induction hypothesis
\[
= \frac{3}{2} 3^{b-1} + \frac{1}{2} \cdot (-1)^b + \frac{3}{2} (-1)^{b-1}
\]
\[
= \frac{1}{2} \left(3^b - (-1)^{b+1} \right)
\]
i.e. indeed \(a_{b+1} = \frac{1}{2} \left(3^{b+1} - (-1)^{b+1} \right) \)

We have thus proven by induction that \(a_m = \frac{1}{2} \left(3^{m-1} - (-1)^{m} \right) \)
for every \(m \in \mathbb{N} \).
(3) Prove that every integer amount of \(n \geq 18 \) dollars can be paid by using 4 or 7 dollar bills only.

We proceed by induction. Let \(P(k) \) denote the statement "\(k \) dollars can be paid using 4 or 7 dollar bills only".

Induction step: We prove that, for any integer \(k > 0 \), \(P(k) \Rightarrow P(k + 4) \).

Suppose that we can pay \(k \) dollars using 4 or 7 dollar bills only, for some \(k > 0 \). By adding a 4 dollar bill we may also pay \(k + 4 \) dollars, i.e. indeed \(P(k) \Rightarrow P(k + 4) \).

Base cases: Because we have proven in our induction step that \(P(k) \Rightarrow P(k + 4) \) we need 4 base cases.

So consider \(n = 18, 19, 20, 21 \):
18 = 4 + 2 \cdot 7 \\
19 = 3 \cdot 4 + 7 \\
20 = 5 \cdot 4 \\
21 = 3 \cdot 7 \\

We have thus proven by induction that \(P(n) \) holds for any \(n > 18 \), i.e., \(n \) dollars can be paid using 4 or 7 dollar bills only for any \(n \geq 18 \).

(4) Consider \(n \) married couples at a party. Suppose that no person shakes hands with their spouse, and the \(2n-1 \) people other than the host shake hands with different numbers of people. With how many people does the host shake hands?

The host shakes hands with \(n-1 \) people.

We prove this claim by induction.
Base case: \(n = 1 \)

If there is one couple, then since the host cannot shake hands with their spouse it follows that they have shaken no hands.

Induction step: Suppose that if \(h \) couples are in the situation described above then the host shook \(h + 1 \) hands, for some integer \(h \geq 1 \).

Consider \(h + 1 \) couples in the situation described above.

Note that for every individual, there are two people that they cannot shake hands with (themselves & their spouse). When asked how many hands they have shaken, everyone will thus give an answer between 0 and \(2h \).

\(\text{(since} \quad 2h = (2h + 2) - 2 \text{)} \)

number of people at the party
Since the $2^k + 1$ people other than the host give different answers, and since there are $2^k + 1$ possible answers, we know that for each integer i with $0 \leq i \leq 2^k$, exactly one person has shaken hands with i people. We will call this person "Person i".

The key point is that Person 2^k and Person 0 must form a couple (because Person 2^k shook hands with everyone except their spouse and themselves) and moreover if we remove this couple from the party, then we are left with 2^k couples in the same situation as that described above.

Therefore, by the induction hypothesis, the host shook $2 - 1$ hands with people from these 2^k couples. Since the host also shook the hand of Person 2^k, but not of Person 0, it follows that they shook $(2^k + 1) - 2 = 2^k$ hands.