Common mistakes: HW 2

September 19, 2019

Question 2: Proving set inclusion 2. (Part (a) in particular)

Some people attempted to give a proof that for arbitrary sets A and B,

$$A \times B^c \not\subseteq A^c \times B^c.$$

This cannot work, since there are examples of sets A and B for which $A \times B^c$ is not a subset of $A^c \times B^c$ (you were tasked with finding such an example), but there are also examples of sets A and B for which $A \times B^c$ is a subset of $A^c \times B^c$. For example, if $A = \{1\}$, $B = \{1\}$ and the universal set is $\mathcal{U} = \{1\}$ then $A \times B^c = A^c \times B^c$.

Question 9: Indexed sets 1. (Especially the set involving the indexed union) A lot of people tried to prove that $(0, \infty) \subseteq \bigcup_{r>1} B_r$ by saying that for every $x > 0$, $x \in \left(\frac{1}{x+1}, x+1\right)$. This only works for some x, because it is not true for every strictly positive x that $x > \frac{1}{x+1}$. An example of when this fails is $x = \frac{1}{2}$, since then $\frac{1}{\frac{3}{2}} = \frac{2}{3}$ and so indeed $x \not> \frac{1}{x+1}$.

Question 10: Indexed sets 2. Several people argued along the lines of

"$\mathcal{P}(\mathbb{N})$ is not a subset of $\bigcup_{n=1}^{\infty} \mathcal{P}([n])$ because \mathbb{N} is an infinite set which belongs to $\mathcal{P}(\mathbb{N})$ and which cannot belong to the union, since all elements in the union are finite sets". This is the right idea, but not a rigorous proof.

A rigorous proof would have to say that \mathbb{N} cannot be an element of any of the power sets in the union. To show that \mathbb{N} is not an element of $\mathcal{P}([n])$ means showing that \mathbb{N} is not a subset of $[n]$, which means finding an element which is in \mathbb{N} but not in $[n]$. That element can be taken to be n.

Note that this paragraph here indicates more how to find the proof than how to write it – please take a look at Irina’s solution for an example of how to write the proof.