Instability of an anisotropic micropolar fluid

Antoine Remond-Tiedrez

Carnegie Mellon University

SIAM Conference on Analysis of Partial Differential Equations, La Quinta (December 2019)
Collaborator

Ian Tice
Carnegie Mellon University
Spot the difference resemblance

(a) Blood
(b) Sperm
(c) Liquid crystal

(a) Ferrofluid
(b) Knee joint
(c) Polymer melt

Antoine Remond-Tiedrez (CMU) Anisotropic micropolar fluids December 2019
Model and setup

The PDE

Result

Difficulties and strategy
Micropolar fluids and continuum mechanics

Full kinematic description: flow map η, initial micro-inertia (J_0), and micro-rotation map Q.

Unknowns: velocity u, micro-inertia J, and angular velocity ω.
Micropolar fluids and continuum mechanics

How to derive the Navier-Stokes equations

1. Conservation laws
 - Mass
 - Linear momentum
 - Angular momentum

2. Linear stress-strain relation
 - Stress T linear in $\mathbb{D}u$

3. Frame-invariance

$$(1) - (3) \Rightarrow \text{(incompressible) Navier-Stokes}$$
Micropolar fluids and continuum mechanics

How to derive the equations of micropolar fluids

1. Conservation laws
 - Mass
 - Linear momentum
 - Angular momentum
 - Micro-inertia

2. Linear stress-strain relation
 - Stress T linear in $(\mathbb{D}u, \frac{1}{2} \nabla \times u - \omega)$
 - Couple-stress M linear in $\nabla \omega$

3. Frame-invariance

 $(1) - (3) \Rightarrow \text{incompressible micropolar fluids}$
Our setup

- The microstructure is **anisotropic** but has an **axis of symmetry**.

 - Isotropic
 - Rod-like
 - Pancake-like
 - ‘Fully anisotropic’

- There is a **constant micro-torque** acting on the microstructure.
Model and setup

The PDE

Result

Difficulties and strategy
The equations are

\[
\begin{align*}
\partial_t u + (u \cdot \nabla) u &= \mu \Delta u + \kappa \nabla \times \omega - \nabla p, & \text{on } \mathbb{T}^3 \\
\nabla \cdot u &= 0, & \text{on } \mathbb{T}^3 \\
J (\partial_t \omega + (u \cdot \nabla) \omega) + \omega \times J \omega &= \tau e_3 + \kappa \nabla \times u - 2\kappa \omega + (\alpha - \gamma) \nabla (\nabla \cdot \omega) + \gamma \Delta \omega & \text{on } \mathbb{T}^3 \\
\partial_t J + (u \cdot \nabla) J &= [\Omega, J] & \text{on } \mathbb{T}^3
\end{align*}
\]

where \(\omega = \text{vec } \Omega \), i.e. \(\Omega \mathbf{v} = \omega \times \mathbf{v} \) for any \(\mathbf{v} \in \mathbb{R}^3 \). \(\alpha, \gamma, \kappa, \mu > 0 \) are viscosity constants and \(\tau > 0 \) is the magnitude of the external micro-torque.

This is supplemented by initial conditions \((u_0, p_0, \omega_0, J_0)\).
Model and setup

The PDE

Result

Difficulties and strategy
Result

In the presence of a constant micro-torque and provided the microstructure has an axis of symmetry the system has a unique equilibrium

Theorem

- If the microstructure is rod-like then the equilibrium is non-linearly unstable in L^2.
- If the microstructure is pancake-like then the equilibrium is non-linearly stable in H^s with algebraic decay to equilibrium.
Model and setup

The PDE

Result

Difficulties and strategy

Antoine Remond-Tiedrez (CMU) Anisotropic micropolar fluids December 2019
The role of anisotropy – Unstable case

Strategy

- Find the fastest growing mode of the linearization about equilibrium.
- Prove that this growing mode is “nonlinearly stable”.

Difficulty: Precession

Due to precession, the linearization is not self-adjoint. Recall:

\[
J \left(\partial_t \omega + (u \cdot \nabla) \omega \right) + \omega \times J \omega \\
= \tau e_3 + \kappa \nabla \times u - 2\kappa \omega + (\alpha - \gamma) \nabla (\nabla \cdot \omega) + \gamma \Delta \omega.
\]
Precession

Micropolar fluid:

\[J (\partial_t \omega + (u \cdot \nabla) \omega) + \omega \times J \omega = \tau e_3 + \kappa \nabla \times u - 2\kappa \omega + (\alpha - \gamma) \nabla (\nabla \cdot \omega) + \gamma \Delta \omega. \]

Freely rotating rigid body with inertia \(J \) and angular velocity \(\theta \):

\[\frac{d}{dt} (J \theta) = J \frac{d}{dt} \theta + \theta \times J \theta = 0. \]
Unstable case - Spectral analysis

The linearization about equilibrium is \(\mathcal{L}X = 0 \), on \(\mathbb{T}^3 \), where the unknown is \(X = (u, \omega, J) \).

We study the spectrum of \(\hat{\mathcal{L}}(k) \) for \(k \in \mathbb{Z}^3 \). For large \(|k| \):

\[
\text{Re} \lambda(k) \to 0 \quad \text{as} \quad |k| \to \infty
\]
The role of anisotropy – Stable case (cartoon)

Consider, where \(a = (J_{13}, J_{23}) \) and \(\chi > 0 \), this cartoon of the linearization

\[
\begin{align*}
\partial_t \omega &= -\omega + \Delta \omega + a \\
\partial_t a &= -\chi \omega
\end{align*}
\]

Solutions satisfy the energy-dissipation relation

\[
\frac{d}{dt} \int_{T^3} \frac{1}{2} |\omega|^2 + \int_{T^3} \frac{1}{2} \chi |a|^2 = -\int_{T^3} |\omega|^2 + |\nabla \omega|^2.
\]

Bootstrapping (formally):

\[
\mathcal{E} = ||\omega||_{L^2}^2 + ||a||_{L^2}^2 + ||\partial_t \omega||_{L^2}^2 + ||\partial_t a||_{L^2}^2
\]

\[
\mathcal{D} = ||\omega||_{H^1}^2 + ||\partial_t \omega||_{H^1}^2 \geq ||a||_{H^{-1}}^2 + ||\partial_t a||_{H^1}^2
\]
Stable case – Hypo-coercivity

Recall:

\[E = \| \omega \|_{L^2}^2 + \| a \|_{L^2}^2 + \| \partial_t \omega \|_{L^2}^2 + \| \partial_t a \|_{L^2}^2 \]

\[D = \| \omega \|_{H^1}^2 + \| \partial_t \omega \|_{H^1}^2 \gtrsim \| a \|_{H^{-1}}^2 + \| \partial_t a \|_{H^1}^2 \]

Hypo-coercivity

By interpolation (formally):

\[\| a \|_{L^2}^2 \lesssim \| a \|_{H^{-1}}^{2\theta} \| a \|_{H^s}^{2(1-\theta)} \]

where \(\theta = \frac{s}{1+s} \uparrow 1 \) as \(s \uparrow \infty \). Therefore

\[E \lesssim D^\theta E_{\text{high}}^{1-\theta} \Rightarrow E(t) \lesssim \frac{E(0)}{(1+t)^\alpha}, \quad \alpha = \frac{\theta}{1-\theta} \uparrow \infty \text{ as } \theta \uparrow 1. \]
Thank you for your attention!