Fall 2014

21-122 - Week 6, Recitation 2

Agenda

- Review: 8.1, 8.2 Arc Length and Area of Surface of Revolution
- 8.1: 7, 12, 33
- 8.2: 5, 11, 15, 25
- (Optional: 8.1 # 32(a),(b))

Review

- Section 8.1: Idea of arclength is to approximate curve by small line segments (see textbook Figure 3, p. 538).
- Arc length of y = f(x), $a \le x \le b$ is $L = \int_a^b \sqrt{1 + (\frac{dy}{dx})^2} \ dx$.
- Section 8.2: Idea of surface area is to approximate surface of revolution by "bands" (see textbook Figure 4, p.546).
- Rotation around x-axis: $S = \int 2\pi y \ ds = \int_a^b 2\pi y \sqrt{1 + (\frac{dy}{dx})^2} \ dx = \int_c^d 2\pi y \sqrt{1 + (\frac{dx}{dy})^2} \ dy$
- Rotation around y-axis: $S = \int 2\pi x \, ds = \int_a^b 2\pi x \sqrt{1 + (\frac{dy}{dx})^2} \, dx = \int_c^d 2\pi x \sqrt{1 + (\frac{dx}{dy})^2} \, dy$
- (Choose formula based on parameterization of curve, $y=f(x), \ a \leq x \leq b$ or $x=g(y), \ c \leq y \leq d$).

Section 8.1

7. Find the exact length of the curve $y=1+6x^{3/2},\ 0\leq x\leq 1.$ Solution - We have $\frac{dy}{dx}=9x^{1/2}$, so now

$$L = \int_0^1 \sqrt{1 + (\frac{dy}{dx})^2} \, dx = \int_0^1 \sqrt{1 + 81x} \, dx = \frac{1}{81} \frac{2}{3} (1 + 81x)^{3/2} \Big|_0^1 = \frac{2}{243} (82^{3/2} - 1)$$

12. Find the exact length of the curve $y = \ln(\cos x)$, $0 \le x \le \frac{\pi}{3}$. Solution - We have $\frac{dy}{dx} = -\tan x$, so

$$L = \int_0^{\pi/3} \sqrt{1 + (\frac{dy}{dx})^2} \, dx = \int_0^{\pi/3} \sqrt{1 + \tan^2 x} \, dx = \int_0^{\pi/3} \sec x \, dx = \ln|\sec x + \tan x| \Big|_0^{\pi/3} = \ln(2 + \sqrt{3})$$

33. Find the arc length function for the curve $y = 2x^{3/2}$ with starting point $P_0(1,2)$.

Fall 2014

Solution Write $\frac{dy}{dx} = 3x^{1/2}$, so now $\sqrt{1 + (\frac{dy}{dx})^2} = \sqrt{1 + 9x}$. Now the arclength function is

$$s(x) = \int_{1}^{x} \sqrt{1+9t} \, dt = \frac{1}{9} \frac{2}{3} (1+9t)^{3/2} \Big|_{1}^{x} = \frac{2}{27} ((1+9x)^{3/2} - 10^{3/2})$$

Section 8.2

5, 11. Find the exact area of the surface obtained by rotating the curve about the x-axis.

(5)
$$y = x^3$$
, $0 \le x \le 2$, (11) $x = \frac{1}{3}(y^2 + 2)^{3/2}$, $1 \le y \le 2$

<u>Solution</u> - For (5), write the integral down and substitute $u = 1 + 9x^4$, $du = 36x^3 dx$, so we get

$$S = \int_0^2 2\pi y \sqrt{1 + (\frac{dy}{dx})^2} \ dx = \int_0^2 2\pi x^3 \sqrt{1 + 9x^4} \ dx = \frac{2\pi}{36} \int_1^{145} \sqrt{u} \ du = \frac{\pi}{18} \cdot \frac{2}{3} u^{3/2} \bigg|_1^{145} = \frac{\pi}{27} (145^{3/2} - 1)^{145} = \frac{\pi}{27} (145^{3$$

For (11), we use the formula $S = \int 2\pi y \sqrt{1 + (\frac{dx}{dy})^2} dy$. Note that $\frac{dx}{dy} = y \sqrt{y^2 + 2}$. Write

$$S = 2\pi \int_{1}^{2} y\sqrt{1 + y^{2}(y^{2} + 2)} dy$$

$$= 2\pi \int_{1}^{2} y\sqrt{y^{4} + 2y^{2} + 1} dy$$

$$= 2\pi \int_{1}^{2} y\sqrt{(y^{2} + 1)^{2}} dy$$

$$= 2\pi \int_{1}^{2} y(y^{2} + 1) dy$$

$$= 2\pi (\frac{1}{4}y^{4} + \frac{1}{2}y^{2}) \Big|_{1}^{2}$$

$$= 2\pi (4 + 2 - \frac{1}{4} - \frac{1}{2})$$

$$= \frac{21\pi}{2}$$

15. The given curve is rotated about the y-axis. Find the area of the resulting surface.

$$x = \sqrt{a^2 - y^2}, \ 0 \le y \le \frac{a}{2}$$

<u>Solution</u> - Use the formula $S = \int 2\pi x \sqrt{1 + (\frac{dx}{dy})^2} \ dy$. We have $\frac{dx}{dy} = -\frac{y}{\sqrt{a^2 - y^2}}$. Now

$$S = 2\pi \int_0^{a/2} \sqrt{a^2 - y^2} \sqrt{1 + \frac{y^2}{a^2 - y^2}} \ dy = 2\pi \int_0^{a/2} \sqrt{a^2 - y^2 + y^2} \ dy = 2\pi \int_0^{a/2} a \ dy = 2\pi a \frac{a}{2} = \pi a^2$$

25. (Gabriel's Horn) Rotate the region $\mathcal{R} = \{(x,y) \mid x \ge 1, \ 0 \le y \le \frac{1}{x}\}$ and we end up with a solid whose volume is finite. Show that the surface area is infinite.

<u>Solution</u> - Use the formula $S = \int 2\pi y \sqrt{1 + (\frac{dy}{dx})^2} \ dx$, where $y = \frac{1}{x}$. Now

$$S = 2\pi \int_{1}^{\infty} \frac{1}{x} \sqrt{1 + \frac{1}{x^4}} \, dx = 2\pi \int_{1}^{\infty} \frac{1}{x} \sqrt{\frac{1 + x^4}{x^4}} \, dx = 2\pi \int_{1}^{\infty} \frac{\sqrt{1 + x^4}}{x^3} \, dx \quad (*)$$

Note that $\frac{\sqrt{1+x^4}}{x^3} \ge \frac{\sqrt{x^4}}{x^3} = \frac{x^2}{x^3} = \frac{1}{x}$ for $x \ge 1$. Since $\int_1^\infty \frac{1}{x} dx$ diverges, then so does (*) above. Thus, the surface area is infinite.