21-122 - Integration and Approximation
Instructor: Adam Gutter
Fall 2014

21-122 - Week 13, Recitation 1

e Review
e Section 11.10: 19, 27, 33, 57, 63
e HW 9 Due

Section 11.10

19. Find the Taylor series for f(x) = cosx centered at a = m. Also find the associated radius of
convergence.
Solution - Write

f(z) =coszx fm)=-1
fl(z) = —sinz f(m)=0
" (z) = —cosz f(m) =1
" (xz) =sinz f"(m)=0

f®(z) = cosz f@(r) = -1

The derivatives repeat in a cycle of four, so we can write
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For the radius of convergence, we use the Ratio Test, a,, = (—1)""‘1%. For = # 7, we have
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Thus, the radius of convergence is R = oo. O

27. Use the binomial series to expand the function
convergence.
Solution - Write

(2+ @ta)7 28 a power series. State the radius of

e = 2+a) P =271+ %) _2—32( )g

We can simplify this by writing
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This expansion is only valid when |§| < 1, or |z| < 2. Thus, the radius of convergence is R = 2.

33. Use a Maclaurin series in Table 1 to obtain the Maclaurin series for f(x) = x cos(:x?).

2
Solutions - Write
1 9 > (lrz)zn e dng1
rcos(z2”) = E ()" = E (=1)" Sy
n=0 n=0
sinz—m+lr3
57. Use series to evaluate the limit lir% wisfi
xr—r
Solution - Write
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63. Find the sum of the series > (—1)"Lr.
n:
n=0
Solution - We can rewrite this as
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