21-122 - Week 1, Recitation 2

Agenda

- Announcements: Office hours
- Review
- Even and odd functions
- 7.1: 15, 17, 19, 24, 40, 41, Example 6

Review

- Recall We say f(x) is even if f(-x) = f(x) for all x domain(f). We say f(x) is odd if f(-x) = -f(x) for all x in the domain(f).
- Theorem 7 on page 412: Suppose f is continuous on [-a, a].
 - (a) If f is even, then $\int_{-a}^{a} f(x) dx = 2 \int_{0}^{a} f(x) dx$.
 - (b) If f is odd, then $\int_{-a}^{a} f(x) dx = 0$.
- Integration by Parts (IBP):

$$\int f(x)g'(x) dx = f(x)g(x) - \int g(x)f'(x) dx \quad \text{or} \quad \int u dv = uv - \int v du$$

For definite integrals, we have

$$\int_{a}^{b} f(x)g'(x) \ dx = f(x)g(x) \bigg|_{a}^{b} - \int_{a}^{b} g(x)f'(x) \ dx$$

Even and Odd Functions

We begin by listing some properties of even and odd functions.

- 1. The product of two even functions is even.
- 2. The product of two odd functions is even.
- 3. The product of an even function and an odd function is odd.

Proof

1. Let f(x), g(x) be even functions. Want to show fg is even. For any x in domain f(g), we have

$$(fq)(-x) = f(-x)q(-x) = f(x)q(x) = (fq)(x)$$

2. Let f(x), g(x) be odd functions. Want to show fg is even. For any x in domain f(g), we have

$$(fg)(-x) = f(-x)g(-x) = (-f(x))(-g(x)) = f(x)g(x) = (fg)(x)$$

3. Let f(x) be even, g(x) odd. Want to show fg is odd. For any x in domain f(g), we have

$$(fg)(-x) = f(-x)g(-x) = f(x)(-g(x)) = -f(x)g(x) = -(fg)(x)$$

Examples

• x and $\sin x$ are odd, so $x \sin x$ is even.

• $\sin x$ is odd, $\cos x$ is even, so $\sin x \cos x$ is odd.

• x^2 and |x| are even, so $|x|x^2$ is even.

More properties of even and odd functions...

1. The sum of two even functions is even.

2. The sum of two odd functions is odd.

<u>Proof</u>

1. Let f(x), g(x) be even. For any x in domain(f+g), we have

$$(f+g)(-x) = f(-x) + g(-x) = f(x) + g(x) = (f+g)(x)$$

2. Let f(x), g(x) be odd. For any x in domain(f+g), we have

$$(f+g)(-x) = f(-x) + g(-x) = -f(x) - g(x) = -(f(x) + g(x)) = -(f+g)(x)$$

Examples - By Theorem 7,

$$\int_{-10}^{10} (x - 5x^3 + \frac{\sin x}{(1+x^2)}) dx = 0$$
$$\int_{-1}^{1} (x^2 + \cos x) dx = 2 \int_{0}^{1} (x^2 + \cos x) dx$$

Section 7.1 - Integration by Parts

(15) $\int (\ln x)^2 dx$.

<u>Solution</u> - Write $u = (\ln x)^2$, dv = dx, so then $du = 2 \ln x \cdot \frac{1}{x} dx$ and v = x. Now

$$\int (\ln x)^2 dx = (\ln x)^2 - \int x(2\ln x \cdot \frac{1}{x} dx) = (\ln x)^2 - 2 \int \ln x dx \qquad (*)$$

To evaluate $\int \ln x \, dx$, choose $u = \ln x$, dv = dx, so then $du = \frac{1}{x} \, dx$ and v = x. Then

$$\int \ln x \, dx = x \ln x - \int x \frac{1}{x} \, dx = x \ln x - \int dx = x \ln x - x + C$$

Substituting this into (*), we have

$$\int (\ln x)^2 dx = (\ln x)^2 - 2(x \ln x - x + C) = (\ln x)^2 - 2x \ln x + 2x + C,$$

where we have absorbed the -2 into C.

 $(17) \int e^{-3\theta} \cos(5\theta) \ d\theta$

Solution - Write $u = e^{-3\theta}$, $dv = \cos(5\theta) d\theta$, so then $du = -3e^{-3\theta} d\theta$ and $v = \frac{1}{5}\sin(5\theta)$. Now

$$\int e^{-3\theta} \cos(5\theta) \ d\theta = \frac{1}{5} e^{-3\theta} \sin(5\theta) - \int \frac{1}{5} \sin(5\theta) (-3) e^{-3\theta} \ d\theta$$
$$= \frac{1}{5} e^{-3\theta} \sin(5\theta) + \frac{3}{5} \int e^{-3\theta} \sin(5\theta) \ d\theta \quad (*)$$

Continue by applying IBP to the integral in (*). Choose $u = e^{-3\theta}$, $dv = \sin(5\theta) d\theta$, so then $du = -3e^{-3\theta}d\theta$ and $v = -\frac{1}{5}\cos(5\theta)$. Now

$$\int e^{-3\theta} \sin(5\theta) d\theta = -\frac{1}{5}e^{-3\theta} \cos(5\theta) - \frac{3}{5} \int e^{-3\theta} \cos(5\theta) d\theta \qquad (**)$$

Substituting (**) into (*), we have

$$\int e^{-3\theta} \cos(5\theta) \ d\theta = \frac{1}{5} e^{-3\theta} \sin(5\theta) + \frac{3}{5} (-\frac{1}{5} e^{-3\theta} \cos(5\theta) - \frac{3}{5} \int e^{-3\theta} \cos(5\theta) \ d\theta)$$

$$= \frac{1}{5} e^{-3\theta} \sin(5\theta) - \frac{3}{25} e^{-3\theta} \cos(5\theta) - \frac{9}{25} \int e^{-3\theta} \cos(5\theta) \ d\theta)$$

$$\implies (1 + \frac{9}{25}) \int e^{-3\theta} \cos(5\theta) \ d\theta = \frac{1}{5} e^{-3\theta} \sin(5\theta) - \frac{3}{25} e^{-3\theta} \cos(5\theta)$$

$$\implies \int e^{-3\theta} \cos(5\theta) = \frac{5}{34} e^{-3\theta} \sin(5\theta) - \frac{3}{34} e^{-3\theta} \cos(5\theta) + C$$

$$= \frac{1}{34} e^{-3\theta} (5 \sin(5\theta) - 3 \cos(5\theta)) + C$$

(19) $\int z^3 e^z \, dz$.

Solution - Write $u = z^3$, $dv = e^z dz$, so $du = 3z^2 dz$ and $v = e^z$. Now

$$\int z^3 e^z \, dz = z^3 e^z - 3 \int z^2 e^z \, dz \quad (*)$$

To evaluate $\int z^2 e^z dz$, write $u = z^2$, $dv = e^z dz$, so then du = 2z dz and $v = e^z$. Now

$$\int z^2 e^z \, dz = z^2 e^z - 2 \int z e^z \, dz \quad (**)$$

Finally, to evaluate $\int ze^z dz$, write u=z, $dv=e^z dz$, so then du=dz and $v=e^z$. Now

$$\int ze^z \, dz = ze^z - \int e^z \, dz = ze^z - e^z + C \quad (***)$$

Substituting (***) into (**), we get

$$\int z^2 e^z dz = z^2 e^z - 2(ze^z - e^z + C) = e^z(z^2 - 2z + 2) + C$$

Substituting this result into (*), we have

$$\int z^3 e^z dz = z^3 e^z - 3(e^z(z^2 - 2z + 2) + C) = e^z(z^3 - 3z^2 + 6z - 6) + C$$

 $(24) \int_0^1 (x^2+1)e^{-x} dx$

Solution - Write $u = x^2 + 1$, $dv = e^{-x} dx$, so then du = 2x dx and $v = -e^{-x}$. Now

$$\int_0^1 (x^2 + 1)e^{-x} dx = (x^2 + 1)(-e^{-x})\Big|_0^1 - \int_0^1 2x(-e^{-x}) dx$$
$$= 1 - 2e^{-1} + 2\int_0^1 xe^{-x} dx$$

To evaluate $\int_0^1 xe^{-x} dx$, write u = x, $dv = e^{-x} dx$, so then du = dx and $v = -e^{-x}$. Now

$$\int_0^1 x e^{-x} \, dx = x(-e^{-x}) \Big|_0^1 - \int_0^1 -e^{-x} \, dx = 0 - e^{-1} - e^{-x} \Big|_0^1 = -e^{-1} - (e^{-1} - 1) = 1 - 2e^{-1}$$

Thus,

$$\int_0^1 (x^2 + 1)e^{-x} dx = 1 - 2e^{-1} + 2(1 - 2e^{-1}) = 3(1 - 2e^{-1})$$

(40) First make a substitution and then use IBP to evaluate $\int_0^{\pi} e^{\cos t} \sin 2t \ dt$. Solution - If we write $\sin 2t = 2 \sin t \cos t$ and substitute $w = \cos t$, then $dw = -\sin t \ dt$ and then

$$\int_0^{\pi} e^{\cos t} \sin 2t \ dt = 2 \int_0^{\pi} e^{\cos t} \cos t \sin t \ dt = 2 \int_1^{-1} e^w w (-dw) = 2 \int_{-1}^1 w e^w \ dw$$

Now using IBP with u = w and $dv = e^w dw$, then du = dw and $v = e^w$, so

$$2\int_{-1}^{1} ue^{u} du = 2(ue^{u}\Big|_{-1}^{1} - \int_{-1}^{1} e^{u} du) = 2(e + e^{-1} - e^{u}\Big|_{-1}^{1}) = 2(e + e^{-1} - (e - e^{-1})) = 4e^{-1}$$

(41) First make a substitution and then use IBP to evaluate $\int x \ln(1+x) dx$. Solution - Substitute w = 1 + x, so dw = dx. Then

$$\int x \ln(1+x) \ dx = \int (w-1) \ln w \ dw$$

Now use IBP. Write $u = \ln w$ and dv = (w - 1) dw, so then $du = \frac{1}{w} dw$ and $v = \frac{w^2}{2} - w$. Now

$$\int x \ln(1+x) \, dx = \int (w-1) \ln w \, dw$$

$$= \left(\frac{w^2}{2} - w\right) \ln w - \int \left(\frac{w^2}{2} - w\right) \frac{1}{w} \, dw$$

$$= \left(\frac{w^2}{2} - w\right) \ln w - \int \left(\frac{w}{2} - 1\right) \, dw$$

$$= \left(\frac{w^2}{2} - w\right) \ln w - \frac{w^2}{4} + w + C$$

$$= \left(\frac{(1+x)^2}{2} - (1+x)\right) \ln(1+x) - \frac{(1+x)^2}{4} + (1+x) + C$$

$$= \frac{1}{2} (x^2 - 1) \ln(1+x) + \frac{1}{2} x + \frac{1}{4} x^2 + C$$

Example 6: Prove the reduction formula

$$\int \sin^n x \, dx = -\frac{1}{n} \cos x \sin^{n-1} x + \frac{n-1}{n} \int \sin^{n-2} x \, dx,$$

21-122 - Integration and Approximation

Instructor: Adam Gutter

 $Fall\ 2014$

where $n \geq 2$ is an integer.

Solution - Write $u = \sin^{n-1} x$, $dv = \sin x \, dx$, so then $du = (n-1)\sin^{n-2} x \cos x \, dx$ and $v = -\cos x$. Now, using the fact that $\cos^2 x = 1 - \sin^2 x$, we have

$$\int \sin^n x \, dx = -\cos x \sin^{n-1} x + (n-1) \int \sin^{n-2} x \cos^2 x \, dx$$

$$= -\cos x \sin^{n-1} x + (n-1) \int \sin^{n-2} x \, dx - (n-1) \int \sin^n x \, dx$$

$$\implies n \int \sin^n x \, dx = -\cos x \sin^{n-1} x + (n-1) \int \sin^{n-2} x \, dx$$

$$\implies \int \sin^n x \, dx = -\frac{1}{n} \cos x \sin^{n-1} x + \frac{n-1}{n} \int \sin^{n-2} x \, dx$$