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Abstract

We consider random walks on edge coloured random graphs, where the colour of an
edge reflects the cost of using it. In the simplest instance, the edges are coloured red or
blue. Blue edges are free to use, whereas red edges incur a unit cost every time they are
traversed.

1 Introduction

The cover time of a connected graph is the maximum over the start vertex of the expected
time for a simple random walk to visit every vertex of the graph. There is a large literature
on this subject see for example [1], [13], including [4]–[8] which give precise estimates of cover
time for various models of random graphs.

We consider the following scenario: There is a connected graph G in which the edges are
colored red and blue. We study the cover time of such a graph when there is a bound on the
number red edges that can be used. We can think of blue edges as free to use, whereas red
edges represent toll roads, the bound being the maximum budget. The decision to use, or not
to use, a toll road can be made in various ways, which we characterize as congestion charging,
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flip walks, oblivious walks and smooth walks. In the simplest case, the oblivious model, the
random walk uses edges of G regardless of colour until the budget is used up, after which it
will be restricted to the blue sub-graph.

Models of red-blue regular graphs. Let G be a connected n-vertex graph, and let W =
W(R,B) be a simple random walk on G subject to the given constraints on the use of red and
blue edges. We use CG = CG(R,B) for the constrained cover time of G by the walk W(R,B),

and use ĈG for the corresponding unconstrained cover time of G.

Let

σRB =
r + b− 1

r + b− 2
, σB =

b− 1

b− 2
. (1)

One simple model is to take G as the union of a random n-vertex r-regular graph with red
edges and a random n-vertex b-regular graph with blue edges. For such graphs, w.h.p. the
unconstrained cover time of G (see [4]) is asymptotic to ĈG = σRBn log n = (r+b−1)/(r+b−
2)n log n, whereas for b ≥ 3, the cover time of a walk restricted to the blue edges is asymptotic
to CG(B) = σBn log n = (b− 1)/(b− 2)n log n.

Another simple model is to take G as the union of a blue Hamilton cycle and a random
r-regular graph with red edges. This model, based on short cutting a Hamilton cycle, is
one of the original Watts-Strogatz type small world models [17]. For r = 1 (the union of
a Hamilton cycle and a random 1-factor) the diameter was studied by Bollobás and Chung
[3]. Subsequently, the fact that 3-regular graphs are Hamiltonian w.h.p. was established by
Robinson and Wormald [16]. Thus almost all 3-regular graphs have a decomposition into a
blue Hamilton cycle and a random red 1-factor.

Smooth walks. The walk alternates in phases between using edges of either colour (a
red/blue phase) and edges of colour blue only (a blue phase). In a red/blue phase the walk is
on G, and in a blue phase the walk is on GB, the subgraph induced by the blue edges. The
length of the phases can vary, but to analyse the model, we require that the length of each
phase is at least ωTG log n where TG is a mixing time given by (2), and ω → ∞ with n. We
call such a walk smooth. We say that such a random walk is α-constrained if in total, it is
only allowed to use a red edge at most γ(α)n log n times, where γ(α) is given in Theorem 1(a)
below.

The congestion pricing model fits naturally as a special case of smooth walks. Peak and
off-peak periods alternate as in the smoothed model. The length C,F (charged, free) of
the peak and off peak periods are fixed and in constant proportion. The walk uses the red
(charged) edges only in off-peak periods when they are free to use. In peak periods the walk
uses only blue (free) edges. We assume there are at most nθ distinct phases of equal length
C + F , for some small θ > 0 constant.
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Theorem 1. (Smooth walks) Let G be the union of a random r-regular graph with red
edges and a b-regular graph with blue edges where r ≥ 1 and b ≥ 2.

(a) If b ≥ 3 and α < 1 constant, then w.h.p. the cover time of an α-constrained smooth
random walk on G with budget γ(α) = (ασRBr)(r + b)n log n is asymptotically equal to
CG(R,B) = (ασRB + (1− α)σB)n log n.

(b) If b = 2, r ≥ 1, and the blue edges span a Hamilton cycle then in the congestion pricing
model with periods C,F , the cover time of a random walk on G is asymptotically equal to
CG = (1 + C/F )((r + 1)/r)n log n.

Flip walks. In a flip walk there is no hard bound on the number of times we use a red
edge, only a stochastic one. At any step, let ρR be the probability of transition down a given
red edge adjacent to the current vertex and ρB the probability of transition down a given
blue edge. Thus the probability the next transition is red is rρR etc. Examples include the
following. Let ρR = α/r, and ρB = (1−α)/b in which case the probability of transition down
a red edge at any step is α, and a blue edge is 1− α.

Theorem 2. (Flip walks)

(a) Simplest case. If r = 1, b = 2, and q = 2ρB = 1− ρR, where 0 < ρR ≤ ρB, the cover time
of a flip walk on G is asymptotically equal to CG ∼ θn log n where

θ =
2

q(5− q +
√
9− 10q + q2)

+
2

q(1− q +
√

9− 10q + q2)
.

This cover time is minimized at 2n log n when ρR = ρB = 1/3, and all edges have the
same transition probability.

(b) If r = 1, b ≥ 2 and 0 < ρR ≤ ρB then w.h.p. the cover time of a flip walk on G is
asymptotically equal to CG ∼ (1/(1 − f))n log n. Here f is the smallest solution in [0, 1]
to F (z) = 0 where F (z) is given by (24).

Theorem 2(a) confirms that for the simplest case, the cover time cannot be improved by
biassing the walk probabilities. The general solution r ≥ 2, b ≥ 2 seems difficult to obtain.

Oblivious walks. The simplest case. The random walk uses edges of G regardless of colour
until the budget is used up, after which it is be restricted to the blue subgraph. In the
case where b = 2, r ≥ 1 and the budget is less than the unconstrained cover time CG ∼
(r + 1)/r n log n, things go seriously wrong for the walk; see Theorem 3(b)–(c) below.

Theorem 3. (Oblivious walks) Let ε > 0 constant.
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(a) Suppose b ≥ 3. and the budget is (1 − ε)σRBn log n.The cover time of an oblivious walk
on G is asymptotically equal to (ασRB + (1 − α)σB)n log n w.h.p., as given in (1) where
α = 1−ε

r(r+b)
.

(b) Suppose that b = 2, r ≥ 1, the blue edges span a Hamilton cycle, and the budget be at
most (1 − ε)(r + 1)/rn log n. The cover time of an oblivious walk on G is asymptotic to
CG(R,B) ∼ n2/2, w.h.p.

(c) If b = 2 and the blue edges span a random 2-factor then w.h.p. an oblivious walk with
budget of at most (1− ε)(r + 1)/rn log n steps will fail to cover G.

Related models. The underlying graph of the random walk we consider varies structurally
over time (temporally) in a predictable fashion; but within the constraint of a fixed budget.
Many authors have considered aspects of this, or related problems. We mention a few below.

For a survey on temporal networks, see Holme [10]. Random walks whose transition probabil-
ity alters depending on structural condition have been studied extensively. An early model by
Kemperman [12], the oscillating random walk, remains one of the simplest and most attrac-
tive. Citing from [12]: Let {Yn, n = 0, 1, ...} denote a stationary Markov chain taking values
in Rd. As long as the process stays on the same side of a fixed hyperplane E, it behaves as a
ordinary random walk with jump measure µ or ν, respectively.

As a general instance of an application of random walks with edge costs, Coppersmith, Doyle,
Raghavan and Snir, [9], use random walks on graphs with positive real costs on all edges
to study the design and analysis of randomized on-line algorithms. Two recent papers by
Majumdar et al., [14], [15], which study variable charges for walk transitions, have some
bearing on the model we consider. In [14], [15], a one-dimensional walker’s position Xt at
discrete time t is a positive random variable evolving according to Xt = Xt−1+ηt. Transitions
are priced according to their length η, there being one price for short distances and another
for longer ones. This reflects how taxi fares are calculated in congested cities1. The authors
compute the average and variance of the distance covered in n steps when the total budget C
is fixed.

Proof outline. Our main tool will be the First Time Visit Lemma. This technique, intro-
duced in [4], allows us to make very precise estimates of cover time in certain classes of graphs.
The technique was subsequently refined in [7], and in [8] where various technical conditions
were removed. In outline, the approach is to bound the cover time above and below using

1[15] The municipality prescribes a threshold speed ηc derived from statistical analyses of local traffic
patterns. If the taxi surpasses ηc, the meter tallies the fare based on the distance covered, while a slower pace
results in time-based fare computation. This approach ensures that drivers are compensated even when they
face prolonged periods of slow progress.
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(4) of Lemma 4. Much of the work is in constructing the lower bound on the cover time. On
regular graphs the walks we consider have uniform stationary distribution, and are rapidly
mixing. The unvisit probability (4) has a parameter pv ∼ πv/Rv (see (3)) where Rv is the
expected number of returns to vertex v during the mixing time.

2 Background material

Notation. We use An ∼ Bn to denote An = (1+ o(1))Bn and thus limn→∞An/Bn = 1. We
use ω to denote a quantity which tends to infinity with n more slowly than any other variables
in the given expression. The expression f(n) ≪ g(n) indicates f(n) = o(g(n)). The inequality
A ≲ B which stands for A ≤ (1 + o(1))B is used to unclutter notation in some places.

2.1 First Time Visit Lemma

Let G denote a fixed connected graph, and let u be some arbitrary vertex from which a
walk Wu is started. Let Wu(t) be the vertex reached at step t, let P be the matrix of

transition probabilities of the walk, and let P
(t)
u (v) = P(Wu(t) = v). Let π be the steady state

distribution of the random walk Wu. For an unbiased ergodic random walk on a graph G with
m = m(G) edges, πv =

d(v)
2m

, where d(v) denotes the degree of v in G.

We denote the steady state probability of a simple random walk on G = (V,E) being at v ∈ V

is πG(v). We let P(t)
u,G(v) denote the probability that a simple random walk on G started at u

is at v after t steps. We then define a mixing time TG by

TG = min

{
τ : max

u,v

{
|P(t)

u,G(v)− π(v)|
π(v)

}
= o(1) for t ≥ τ

}
. (2)

For t ≥ 0, let At(v) be the event that Wu does not visit v in steps TG, TG + 1, . . . , t. The
vertex u will have to be implicit in this definition. We will use the following version:

Lemma 4. Let Rv ≥ 1 is the expected number of visits by Wv to v in the time interval [0, TG].
Suppose that TGπv = o(1) and Rv = O(1). Let

pv =
πv

Rv(1 +O(TGπv))
. (3)

Then for all t ≥ TG,

P(At(v)) =
(1 +O(TGπv))

(1 + pv)t
+O(T 2

Gπve
−µt/2), (4)

where µ = Ω(1/TG).
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2.2 Properties of random regular graphs

The use of (4) will require us to verify some facts about random regular graphs. These will
by and large be taken from [4]. Let

σ =
⌊
log1/2 n

⌋
. (5)

Say a cycle C is small if |C| ≤ σ. A vertex of G is locally tree-like if v is at distance at least
σ from the nearest small cycle.

Theorem 5. Let s ≥ 3 be a constant and let G be chosen uniformly from the set Gs of s-regular
graphs with vertex set [n]. Then w.h.p.

P1. G is connected.

P2. TG = O(log n).

P3. If v is locally tree-like then Rv =
s−1
s−2

+ o(σ−1).

P4. There are at most s3σ non locally-tree-like vertices and if v is not locally-tree-like then
Rv ≤ 3.

P5 The second eigenvalue λ of G is positive and λ ≤ 1− θ for some positive constant θ.

3 Proof of Theorem 1

3.1 Proof of Theorem 1(a)

In this section we prove that if b ≥ 3 then w.h.p. the cover time of an α-constrained smooth
random walk on G with budget γ(α) = (ασRBr)/(r + b)n log n is asymptotically equal to
CG = (ασRB + (1− α)σB)n log n. It was shown in [4] that the unconstrained cover time of G

is ĈG ∼ σRB n log n w.h.p. Without any constraint on the choice of the next edge, a walk of
length ĈG would cross a red edge ∼ r

r+b
σRB n log n times. It follows that w.h.p. we will not be

able to complete the walk within the budget without having to avoid red edges a significant
number of times.

If the phases are o(TG) in length then there are some technical difficulties that we have not
yet managed to overcome, see Remark 1 below.

Remark 1. There does not seem to be a compelling reason for us to only consider smooth
walks. If we allow the walk to switch between allowing red edges and not allowing them,
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then we have no problems with mixing. This is because the steady state probabilities are 1/n
regardless. The problem arises because Rv will depend heavily on how we switch between the
two possibilities.

3.1.1 Upper bound

Suppose now that we start a walk at vertex u and that we alternate between red/blue phases
and blue phases. Take t0 = 0, and suppose we change phase at times t1, t2, . . . , ti, . . .. Assume
that whenever i is even we start a red/blue phase at ti and switch to a blue phase when i is
odd. At each step in a red/blue phase there is an r/(r + b) chance of using a red edge. We
also know that this walk will finish at least as early as one that only uses blue edges. This
follows from Lemma 4 and the fact that s/(s − 1) decreases as s increases. We will assume
ti − ti−1 ≥ ω log2 n≫ TG for 1 ≤ i < m, so that

tRB =
∑
i≥0

(t2i+1 − t2i) ≤
(
1−Θ

(
log n

n1/2

))
ασRBn log n. (6)

Multiplying the RHS of (6) by r/(r + b) and applying the Chernoff bounds yields an upper
bound of γ(α)n log n on the number of times a red edge is used.

Let TG(u) be the time taken to visit every vertex of G by the random walk Wu. Let Ut be the
number of vertices of G which have not been visited by Wu at step t. We note the following:

Cu = ETG(u) =
∑
t>0

P(TG(u) ≥ t), (7)

P(TG(u) > t) = P(Ut > 0) ≤ min{1,EUt}. (8)

It follows from (7), (8) that for all t

Cu ≤ t+
∑
s≥t

EUs = t+
∑
v∈V

∑
s≥t

P(As(v)). (9)

In both phases the random walk is on a regular graph and so πv = 1/n throughout.

We are stopping the RB walk at t∗ ∼ σRBn log n when the budget runs out. At that time the
walk has made tRB ∼ ασRBn log n RB steps, and tB ∼ (1−α)σBn log n B steps, consisting of
m phases each of B and RB up to t∗. This is followed by a final ’blue forever’ phase of length
t′B = t− t∗.

So,

P(At(v)) =

(
1 +O

(
log n

n

))m

exp

{
− πv
σRB

∑
i≥0

(t2i+1 − t2i)−
πv
σB

∑
i≥1

(t2i − t2i−1)

}
. (10)
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Now assuming that t = O(n log n) and because each phase has length at least ω log2 n we have
m = o(n/ log n), and so we have

P(At(v)) ≲ exp

{
−
(
α +

1

σB

(
t

n log n
− ασRB

))
log n

}
= exp

{
− t

σBn
+ ασRB

(
1

σB
− 1

σRB

)
log n

}
. (11)

For non locally tree-like vertices, using P4, we can write

P(At(v)) ≲ e−t/3n. (12)

Define a time t0 = (1 + ε)τC , by

t0 = (1 + ε) (ασRB + (1− α)σBn log n) .

We note this value of t0, (and t1 below), is unrelated to our previous use of notation ti for a
smoothed period, but is consistent with [4].

Thus if ε = log−1/2 n going back to (9) and using P4, (11), we see that for some absolute
constants γ1, γ2 > 0,

Cu ≤ t0 +
∑
v∈[n]

∑
τ≥0

P(At0+τ )

≤ t0 + ne−γ1 log
1/2 n

∑
τ≥0

e−γ2τ logn + (r + b)3 log logn
∑
τ≥t0

e−τ/3n

= t0 + o(n). (13)

This confirms the upper bound in Theorem 1(a).

3.1.2 Lower bound

For the lower bound we let t1 =
(1−ε)α(r+b)
(b−2)(r+b−1)

n log n and argue that Cu ≥ t1 w.h.p. Proceeding

as in [4], for any vertex u, we can find a set of vertices S such that at time t1, the probability
the set S is covered by the walk Wu tends to zero. Hence TG(u) > t1 whp which together
with (13) completes the proof of Theorem 1(a).

We construct S as follows. Let σ be given by (5). Let S ⊆ [n] be some maximal set of locally
tree-like vertices all of which are at least distance 2σ + 1 apart. Thus |S| ≥ (n− r3σ)/r(2σ+1).
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Let S1 denote the subset of S which has not been visited by Wu after step t1.

E|S1| ∼
∑
v∈S

exp

{
− t1
σBn

+

(
1 +O

(
log n

n1/2

))
α(r + b) log n

r

(
1

σRB

− 1

σB

)}
≥ (n− r3σ)r−(2σ+1) exp

{
− εα(r + b) log n

(b− 2)(r + b− 1)

}
→ ∞. (14)

Let Yv,t be the indicator for the event that Wu has not visited vertex v at time t. Let
Z = {v, w} ⊂ S. We will show below that

E(Yv,t1Yw,t1) ∼ exp

{
−2

(
t1
σBn

+

(
1 +O

(
log n

n1/2

))
α(r + b) log n

r

(
1

σRB

− 1

σB

))}
. (15)

Thus
E(Yv,t1Yw,t1) = (1 + o(1))E(Yv,t1)E(Yw,t1). (16)

It follows from (14) and (16), that

P(S(t1) ̸= 0) ≥ (E|S(t1)|)2

E|S(t1)|2
=

1
E|St1 |(|St1 |−1)

(E|S(t1)|)2 + (E|St1 |)−1
= 1− o(1).

Going back to (10), we see that with these values of πZ , RZ , this completes the proof of
Theorem 1(a), apart from (15) which we give next.

Proof of (15). Let Γ be obtained from G by merging v, w into a single node Z. This node
has degree 2r and every other node has degree r.

There is a natural measure preserving mapping from the set of walks in G which start at u
and do not visit v or w, to the corresponding set of walks in Γ which do not visit Z. Thus the
probability that Wu does not visit v or w in the first t steps is equal to the probability that
a random walk Ŵu in Γ which also starts at u does not visit Z in the first t steps.

That πZ = 2
n
is clear. We also have

Rv ≤ RZ ≤ Rv +
T∑

t=2σ+1

(πw + λt) = Rv +O(Tλ2σ).

The sum here being a bound on the probability that Wv is at w before the end of the mixing
time. The value λ is the second eigenvalue in P5. 2

3.2 Congestion model: Theorem 1(b)

Let t1 = (1+ ε)(1 +C/F )σRBn log n where ε > 0 is arbitrary. The amount of time spent in a
free phase is (1 + ε)σRBn log n and so w.h.p. G will be covered.
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For the lower bound, let t2 = (1− ε)(1+C/F )σRBn log n. We defer the proof that G will not
be covered until Section 5.4.

4 Proof of Theorem 2

Stationary distribution and mixing time. Let d = r+ b be the total degree of a vertex
in the red/blue coloured graph G. Assume d ≥ 3 and G satisfies the conditions of Section 2.2.

In the flip model, ρR (resp. ρB) is the probability of transition over a given red edge (resp.
blue edge). This corresponds to a weighted graph in which w(eR) = ρR, w(eB) = ρB for
red and blue edges respectively, all vertices v have weight w(v) = 1 and w(G) = n. Thus
πRB(v) = 1/n, and G has uniform stationary distribution. For a given set S ⊆ V , the
conductance (bottleneck ratio) ΦRB(S) is

ΦRB(S) =
Q(S, Sc)

π(S)
=

∑
v∈S,w∈Sc πvPRB(v, w)∑

v∈S πv
=

∑
v∈S,w∈Sc PRB(v, w)

|S|
.

Comparing with a simple random walk on G,

1

|S|
∑

v∈S,w∈Sc

PRB(v, w) ≥ min(ρR, ρB)
E(S : Sc)

d|S|
= min(ρR, ρB)ΦSRW (S),

where E(S : Sc) is the number of edges between S and Sc and ΦSRW refers to the conductance
of a simple randpm walk.

As G satisfies P5, the conductance Φ∗
SRW of a simple random walk on G is constant for some

0 < c < 1. Assuming min(ρR, ρB) is also a positive constant, the conductance Φ∗
PB of the flip

walk is constant, i.e.,

Φ∗
PB = min

π(S)≤1/2
ΦRBΦ(S) ≥ min(ρR, ρB)Φ

∗
SRW .

It follows that the flip walk on G is rapidly mixing and satisfies (2) as required.

Return probability. The proof of Theorem 2 will follow from the proof in [4], once we es-
tablish Rv for locally-tree-like vertices. To do this we argue as follows. The initial formulation
is for the general case r ≥ 1, b ≥ 2. We then prove existence of solutions for r = 1, b ≥ 2, and
state the exact value of Rv for the special case r = 1, b = 2. The journey to the answer is
longer than we might expect.

Consider an infinite d-regular tree Td, where r+ b = d and in which each vertex has r red and
b blue edges. For discussion we regard Td as rooted at a designated vertex v, with all edges
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nominally oriented outward from v. With this orientation, a transition away from v (resp. u)
at a vertex u, is a transition uw down an out-edge of u. Relative to this orientation, a vertex
other than v is red if its in-edge is red, and blue if its in-edge is blue. With the exception of v
this induces an alternating pattern of red and blue vertices in Td, in which e.g., a red vertex
has (r − 1) red out-edges, and b blue out-edges.

Recall that, in the flip model, ρR (resp. ρB) is the probability of transition over a given red
edge (resp. blue edge). Let f be the probability of a first return to v in Td, then the expected
number of returns to v is Rv(Td) = 1/(1 − f). Let ϕv,R (resp. ϕv,B) be the probability of a
return to v given the particle exits v on a red (resp. blue) edge. Thus

f = rρR ϕv,R + bρB ϕv,B.

Let u be a red vertex, and uw a red edge pointing away from u and thus away from v. Define
ϕRR = ϕ

(u)
RR(uw) by

ϕRR =P( the walk returns to u | u is red and the walk exits away from u on a red edge),

and define ϕRB, ϕBB, ϕBR similarly. Note that ϕRR = ϕBR = ϕv,R = ϕR, say. For a red vertex
u, let ψR(u) be the probability the walk moves away from v at u, and subsequently returns
to u. Thus with P (u,w) the colour dependent transition probability over the edge uw, ϕ(uw)
the colour dependent return probability, and N+

R (u) the red out-neighbours of u etc.,

ψR(u) =
∑

w∈N+(u)

P (u,w)ϕ(uw) =
∑

w∈N+
R (u)

ρRϕRR +
∑

w∈N+
B (u)

ρBϕRB.

If u is red, there are r − 1 red out-neighbours, and b blue out-neighbours, so

ψR = (r − 1)ρRϕR + bρBϕB.

Suppose the transition is away from u over a red edge uw to a red out-neighbour w, then the
walk moves back to u with probability ρR and so

ϕ
(u)
RR(uw) = ρR + ψRρR + · · ·+ (ψR)

jρR + · · · = ρR
1− ψR

. (17)

Here the term (ψR)
jρR is the probability that the walk returns to u after making j returns to

w that do not include a visit to u.

For a walk arriving at u, three things can happen. It moves directly back towards v (probability
ρR > 0), moves away from u and returns to u later (probability ψR), or moves away from u
and never returns (probability ξR). Thus

ρR + ψR + ξR = 1, (18)

and ψR ≤ 1− ρR < 1, and similarly for ψB < 1. This justifies division by 1− ψR in (17).
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We obtain

ψR =
(r − 1)ρ2R
1− ψR

+
bρ2B

1− ψB

, (19)

ψB =
rρ2R

1− ψR

+
(b− 1)ρ2B
1− ψB

, (20)

f =
rρ2R

1− ψR

+
bρ2B

1− ψB

. (21)

Do (19) and (20) always have solutions ψR, ψB in [0, 1] and if more than one solution, which
to choose? This is discussed next. Assume for now that solutions exists. Then for a given
solution ψB, using (20) and (21) we see that

f = ψB +
ρ2B

1− ψB

. (22)

As 1/Rv = 1− f + o(1) in G, we obtain the required solution to the cover time of G as

CG ∼ 1

1− f
n log n. (23)

General solution in the case r = 1. Put ψR = x, ψB = z. As r = 1 we have ρR+bρB = 1.
Assume b ≥ 2 and ρR ≤ ρB so that 0 ≤ ρR ≤ 1/(b+ 1). Use (19) to get

1

1− x
=

1− z

1− z − bρ2B
,

and substitute this for 1/(1− x) in (20) giving

z =
ρ2R(1− z)

1− z − bρ2B
+

(b− 1)ρ2B
1− z

.

Put q = bρB and ρR = 1− q where b/(b+ 1) ≤ q ≤ 1, to consider F (z) = 0 where

F (z) = z − (1− q)2(1− z)

1− q2/b− z
− (b− 1)q2

b2(1− z)
. (24)

If ρR = 1/(b + 1) then all edges are equivalent in a b + 1 regular tree and the roots z∗ are
1/(b + 1), b/(b + 1). If q = 1 (no useable red edges) then the problem reverts to a b-regular
tree, in which case the roots z∗ of F (z) are 1/b, (b− 1)/b.

If b = 2, q = 1, z = 1/2 is the only root to F (z) = 0. Ignoring this case which corresponds to
a random walk on the line, we will assume that q < 1 and b ≥ 2. Let z0 = 1 − q2/b. In the
interval I0 = [0, z0], F (0) < 0, F (z−0 ) = −∞. It can be checked that F (z) is concave on I0. In
the interval I1 = [z0, 1], F (z

+
0 ) = ∞, F (1) = −∞ and F (z) is monotone decreasing. So there
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are between one and three roots in [0, 1] depending on what happens in I0. We will establish
that if b ≥ 2, q < 1, then F (1/2) > 0 which implies there are two roots in I0. We have

F (1/2) =
1

2
− b(1− q)2

b− 2q2
− 2(b− 1)q2

b2
.

It can be checked that ∂F/∂b > 0 for any fixed q, so as F (1/2) is monotone increasing with
b, and b = 2 has the largest range of q, (i.e., 2/3 ≤ q < 1), we check this case. After some
simplification we obtain that if b = 2,

F (1/2) = (1− q)

(
1 + q

2
− 1

1 + q

)
.

So F (1/2, b = 2) > 0 boils down to (1 + q)2 > 2. As q ≥ 2/3 = b/(b + 1), and (5/3)2 > 2, it
is indeed the case that F (1/2) > 0 as required.

The simplest case: Theorem 2(a). We solve F (z) = 0, where F (z) is given by (24), in
the simplest case; namely r = 1, and b = 2. Thus ρR + 2ρB = 1. Put q = 1− ρR = 2ρB, and
w = 1− z to give, after some rearrangement, F (w) = N(w)/D(w). Here the numerator N(w)
is

N(w) = w3 − q

2
(4− q)w2 +

3

4
q2w − 1

8
q4.

It can be checked that w = q/2 is a factor of N(w) and so

N(w) = (w − q/2)(w2 + w(q/2)(q − 3) + q3/4).

The roots of F (w) = 0 are q/2, (q/4)[(3− q)±
√
9− 10q + q2]. We prove that the smallest

root z ∈ [0, 1] is indeed the correct one. We use ρB + ψB + ξB = 1 from (18). As ρB = q/2
and ψB = z = 1− w we obtain ξB = w − q/2.

The root w− = (q/4)[(3−q)−
√

9− 10q + q2] implies ξB < 0 for q < 1. As ξB is a probability,
this is impossible. The root w = q/2 (or w−(q = 1)) imply that ξB = 0. This corresponds to
a recurrent system, an answer we do not accept (see below). Thus the only feasible root is
w+ = (q/4)[(3− q) +

√
9− 10q + q2] giving ψB = z = 1−w+, this being the smallest root of

F (z) = 0.

We briefly sketch why the system is not recurrent. For a random walk on the half-line
{0, 1, 2, ...} starting from vertex 1, let q, p be the probability of moving left and right re-
spectively at any vertex i > 0. Then assuming q ≤ p, the probability of absorption at the
origin 0, is π0 = q/p. Thus for our system

π0 ≤ max

{
ρR

1− ρR
,

ρB
1− ρB

}
= max

{
ρR
2ρB

,
ρB

ρB + ρR

}
.

As we assume 0 < ρR ≤ ρB it follows that π0 < 1, ξ > 0 and the system is not recurrent.
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Refer to (22) and (23). With ψB = 1− w and ρB = q/2. the value of θ = 1/(1− f) is

θ =
1

2

(
1

w + q/2
+

1

w − q/2

)
,

The largest value of w among the roots, and hence the smallest value of z = ψB, gives

θ =
2

q(5− q +
√

9− 10q + q2)
+

2

q(1− q +
√

9− 10q + q2)
. (25)

The minimum of θ(q) is at q = 2/3, which follows by checking the derivative. This corresponds
to ρR = ρB = 1/3. The value q = 2/3 gives θ = 2, and hence value of CG ∼ 2n log n in (23).
This confirms the w.h.p. cover time of a random 3-regular graph from [4] as the minimum
cover time for this model. The value of θ is plotted in Figure 1.

0.0 0.2 0.4 0.6 0.8 1.0

2
4

6
8

10

Value of q

T
he

ta

Figure 1: Plot of θ = θ(q) from (25) as q varies from 0 to 1. The minimum value of θ = 2 is
at q = 2/3, giving a cover time of 2n log n for random 3-regular graphs. Values of q for which
ρR < ρB are to the right of the vertical line at q = 2/3. The plots diverge at q = 0, 1.
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5 The oblivious model: Proof of Theorem 3

5.1 Proof of Theorem 3(a).

This follows directly from Theorem 1(a).

5.2 Proof of Theorem 3(b).

We prove that if b = 2, and the blue edges span a Hamilton cycle H, then the cover time of
an oblivious walk on G with budget t1 = (1− ε)(r + 1)/rn log n is asymptotic to n2/2.

DivideH into ℓ = nν consecutive intervals I1, I2, . . . , Iℓ of length L = n1−ν , where 0 < ν ≤ ε/3.
Fix one such interval I. Let S0 be the locally tree-like vertices in I and then choose S by
greedily choosing a subset of S0 where each pair of vertices are at distance 2σ+1 apart. Note
that |S| ≥ n1−ν−o(1).

Let S1 = S1(t1) denote the subset of S which has not been visited by the walk W at step
t1 = (1−ε)(d−1)/(d−2)n log n, where d = r+ b as usual, and b = 2. Let Xv be the indicator
that vertex v ∈ S is unvisited at step t1. Thus applying Lemma 4 as in Section 3.1, we obtain

E|S1| =
∑
v∈S

Xv =
∑
v∈S

exp

{
−(1 + η)

Rv

n
(1− ε)

d− 1

d− 2
n log n

}
=
n1−ν

d3σ
n−1+ε+o(1) = nδ,

where δ = ε − ν + o(1). Here η = o(1) combines the errors arising from estimating Rv =
(d− 2)/(d− 1)(1 + o(1)), the convergence via (2) of W to πv = 1/n, and the approximation
of pv = πv/Rv(1 +O(Tπv) in Lemma 4.

We next prove that |S1(t1)| > 0 by adapting the approach used in Section 3.1.2. When
calculating the variance of |S1| by contraction of pairs u, v ∈ S1, the main error ν comes from
the change in Rv due to the probability that the walk travels between the pair of contracted
vertices u, v in the mixing time. From [4] this is

β =

TG∑
t=2σ

(πv + λt) = o(1/ log n) (26)

assuming λ = 1− θ for some θ > 0 constant, and σ is given by (5).
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For X =
∑
Xv,

EX(X − 1) =
∑
u,v∈S

EXuXv

=
∑
u,v∈S

exp

{
−(1 + η)

2

n
R(u,v)(1 + β) (1− ε)

d− 1

d− 2
n log n

}
=n2δnO(β/n) = (ES1)

2

(
1 +O

(
1

n

))
,

where β is defined in (26). So,

Var|S1| =EX(X − 1) + E|S1| − (E|S1|)2

=E|S1|
(
1 +O

(
E|S1|
n

))
=E|S1|(1 + o(1)).

Using the Chebychev Inequality we deduce that

P(S1 = ∅) < P(|S1 − ES1| ≥ ES1/2) ≤
5

ES1

= O

(
1

nδ

)
.

Let ν = ε/3. The expected number of segments with S1 = ∅ is at most

O

(
ℓ

nδ

)
= O

(
nν

nε−ν+o(1)

)
=

1

nν+o(1)
.

We conclude that w.h.p. each segment I has at least one unvisited vertex in S1(I) when the
budget runs out at t1. Thus we have to effectively walk around the cycle to reach them all.
This requires ∼ n2/2 time w.h.p. Let COBV (ε) be the cover time of an oblivious walk with
budget at most t1 = (1− ε)C(G), then

COBV (ε) ≈ C(Cn) ∼
n2

2
.

5.3 Proof of Theorem 3(c).

We first observe that the space F(2, r) of graphs formed by the union of a random 2-factor
and a random r-regular graph is contiguous to the space G(r + 2) of random (r + 2)-regular
graphs, see for example Wormald [18]. So, the Red/Blue walk has mixing time O(log n) w.h.p.
(we apply contiguity to the property of having a small second eigenvalue as in P5).

We next prove a basic lemma on random 2-factors.
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Lemma 6. W.h.p. a random 2-factor contains at least 2 cycles of length at least cn/(log2 n)
for some absolute constant c > 0.

Proof. We begin by arguing that the number of cycles in a random 2-factor is O(log n) w.h.p.
It follows that w.h.p. there is at least one cycle of length Ω(n/ log n), among which we
choose the longest. We then argue that w.h.p. the maximum length of this cycle is at most
ℓ = n− n/ log n. As at least n/ log n vertices remain after removing this cycle it follows that
there is another cycle of length at least Ω(n/ log2 n).

Number of cycles. Let Sn denote the set of permutations of [n], and let S ′ ⊆ Sn be the
subset with minimum cycle length 3. We can obtain a random 2-factor F by choosing a
random permutation from S ′. This is not done uniformly, but we choose permutation π with
probability proportional to 1

2ℓ
where ℓ = ℓ(π) is the number of cycles in π. Having chosen π

we obtain our 2-factor by ignoring orientation. A 2-factor F with ℓ = ℓ(F ) cycles arises from
2ℓ distinct permutations and so a 2-factor F is chosen with probability 2ℓ(F ) · 1

2ℓ(F ) · 1
M
, where

M =
∑

π∈S′
1

2ℓ(π) . Now the proof of Proposition 2(a) of Karp [11] implies that

P(ℓ(π) ≥ a log n) ≤ P(Bin(a log n, 1/2) ≤ log2 n) ≤ n−a/3 for a ≥ 2. (27)

So, P(ℓ(π) ≥ 2 log n) ≤ n−2/3. Because |S ′|/|Sn| = c ∼ e−3/2 this also holds for S ′. Summing
over S ′,

M =
∑

ℓ(π)<2 log2 n

1

2ℓ(π)
+

∑
ℓ(π)≥2 log2 n

1

2ℓ(π)
≥ cn!(1−O(n−2/3))

n2
.

And

P(ℓ(F ) ≥ 3 log2 n) =
∑

m≥3 log2 n

|{π ∈ S ′ : ℓ(π) = m}|
2mM

= O(n−1).

Longest cycle. We use the configuration model of Bollobás [2]. In this model the expected
number of cycles of length at least ℓ ≥ ℓ0 = n− n/ log n is

n∑
k=ℓ0

(
n

k

)
(k − 1)!

2
· 2k · (2n− 2k)!

(n− k)!2n−k
· n!2

n

(2n)!
=

n∑
k=ℓ0

22k

2k

n!n!

(2n)!

(
2n− 2k

n− k

)

=O

(
1√
n

)
+O(

√
n)

n−1∑
k=ℓ0

1√
n− k

1

k

=O

(
1√
n

)
+O(

√
log n) log

(
n

n− n/ log n

)
= O

(
1√
log n

)
.
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Given Lemma 6 we proceed as follows: let C1, C2 be two of the cycles of length at least
Ω(n/ log2 n), as promised by Lemma 6. As in Section 5.2, let L = n1−ν where ν > 0.
Partition each of the cycles C1, C2 into intervals of length L. We know that w.h.p. at time
t1 = (1− ε)(d− 1)/(d− 2)n log n, (where d = r+ b) there will be unvisited vertices in C1, C2

and the result follows.

5.4 Finishing the proof of Theorem 1(b). The lower bound

For the lower bound, let t2 = (1 − ε)(1 + C/F )σRBn log n. The length C,F of the charged
and free periods are fixed and in constant proportion. The t2 steps are divided into τ = nθ

phases of equal length C + F = n1−θ+o(1). The total amount of time spent in free phases is
(1− ε)σRBn log n.

In phase 1 ≤ i ≤ τ , during a charged period C the walk will w.h.p. cover an interval Ji of the
Hamilton cycle of length n(1−θ)/2+o(1). Let I1, I2, . . . , Iℓ be intervals of length L = n1−ν , where
ν = ε/3 as in Section 5.2. In total, the intervals J1, J2, . . . , Jτ cover at most nθ n(1+θ)/2+o(1)

vertices.

We require nθ+(1+θ)/2+o(1) ≪ L = n1−ε/3, which is satisfied by θ = (1− ε)/4. With this value
of θ, w.h.p. each interval Ij j = 1, ..., ℓ will contain a vertex unvisited during the free phases.
This completes the proof of Theorem 1(b).
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