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Abstract

We show that w.h.p. the random r-uniform hypergraph Hn,m contains a loose

Hamilton cycle, provided r ≥ 3 and m ≥ (1+ϵ)n logn
r , where ϵ is an arbitrary posi-

tive constant. This is asymptotically best possible, as if m ≤ (1−ϵ)n logn
r then w.h.p.

Hn,m contains isolated vertices.

1 Introduction

The thresholds for the existence of Hamilton cycles in the random graphs Gn,m, Gn,p have
been known for many years, see [1], [3] and [15]. There have been many generalisations of
these results over the years and the problem is well understood. It is natural to try to extend
these results to hypergraphs.

An r-uniform hypergraph is a pair H = (V,E) where E ⊆
(︁
V
r

)︁
. Let Hn,p be the binomial

random r-uniform hypergraph on n vertices with edge probability p. (The uniformity is r
thoughout and so we drop r from some of the notation.) Let Hn,m be the random r-uniform
hypergraph on n vertices with m randomly chosen Em edges from

(︁
V
r

)︁
. We are also interested

in oriented hypergraphs in which each edge has one distinguished vertex called its tail and
r − 1 heads. Let H⃗n,p be the oriented counterpart of Hn,p in which each one of the r

(︁
n
r

)︁
possible oriented edges is picked independently with probability p. Note that if we take H⃗n,p
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and ignore the orientations, then the outcome is distributed as Hn,p′ with p′ = 1− (1− p)r,
so p′ ∼ rp when p = o(1).

We say that an r-uniform sub-hypergraph C of H is a Hamilton cycle of type ℓ, for some
1 ≤ ℓ ≤ r− 1, if there exists a cyclic ordering of the vertices V such that every edge consists
of r consecutive vertices and for every pair of consecutive edges ei−1, ei in C (in the natural
ordering of the edges) we have |ei−1\ei| = ℓ. When ℓ = r−1 we say that C is a loose Hamilton
cycle. Frieze [10], Dudek and Frieze [5] and Dudek, Frieze, Loh and Speiss [6] established the
threshold for the existence of a loose Hamilton cycle in Hn,m up to a constant factor. (See
also, Ferber [7] and Frankston, Kahn, Narayanan and Park [8].) We will prove the following
theorem:

Theorem 1. Let ε > 0 be an arbitrary small positive constant. If r ≥ 3 and (r− 1) | n and

m ≥ (1+ε)n logn
r

then w.h.p. Hn,m contains a loose Hamilton cycle.

If m ≤ (1−ε)n logn
r

then w.h.p. Hn,m contains isolated vertices and so this is asymptotically
best possible. (The constraint (r − 1) | n is necessary for the existence of a loose Hamilton
cycle. We should also remark that Narayanan and Schacht [16] obtained the precise threshold
for type ℓ cycles, except for the case of loose Hamilton cycles.)

We need the following result of Altman, Greenhill, Isaev and Ramadurai [2]. They proved
the following theorem: let Hn,d denote a random d-regular, r-uniform hypergraph on vertex
set [n].

Theorem 2. Suppose that r | dn and r − 1 | n. Then,

lim
n→∞

P(Hn,d contains a loose Hamilton cycle) =

{︄
1 d > ρ(r).

0 d ≤ ρ(r).

Here ρ = ρ(r) is the unique real in (2,∞) such that

(ρ− 1)(r − 1)

(︃
ρr − d− r

ρr − ρ

)︃(r−1)(ρr−ρ−r)/r

= 1.

We also need (the proof of) the following theorem of Kahn [13]:

Theorem 3. Let ε > 0 be an arbitrary positive constant. If r | n and m ≥ (1+ε)n logn
r

then
w.h.p. Hn,m contains a perfect matching.

2 Proof of Theorem 1

Let K =
(︁
[n]
r

)︁
denote the edges of the complete r-uniform hypergraph with vertex set [n].

Let N = |K| =
(︁
n
r

)︁
. Let Ĥn,d be the random (multi)-hypergraph in which every vertex v

2



picks a random set of d edges that contain v. Each edge is picked independently of other
choices and with replacement, so in principle one vertex could pick the same edge twice or
two different vertices may pick the same edge. However, neither of these situations will occur
w.h.p for d = d∗ = ε2 log n, which is what we are interested in. We can think of Ĥn,d as a
hypergraph generalization of the d-out model of random graphs. For convenience, we may
sometimes regard Ĥn,d as oriented by making each vertex be the tail of all the edges that it
picked.

We will be concerned with Hn,p for p = (1+ε)p∗ where p∗ = log n/
(︁
n−1
r−1

)︁
and ε > 0 is a small

constant.

Theorem 4. Let d∗ = ε2 log n, p = (1 + ε) log n/
(︁
n−1
r−1

)︁
and ρ ∈ N constant. Then, there is

a coupling in which Hn,p contains ρ independent copies ˆ︁Γ1, ˆ︁Γ2, . . . , ˆ︁Γρ of Ĥn,d∗ w.h.p.

Proof. We will consider three types of edges: 1, 2 and 3. Edges of types 1 and 3 are oriented,
i.e. they have a distinguished vertex called tail and r − 1 heads. Edges of type 2 are not
oriented. E⃗1, E2, E⃗3 will be auxiliary random hypergraphs on [n] with edges of types 1, 2, 3,

respectively, and built independently of each other. E⃗1 is built by picking each one of the

r
(︁
n
r

)︁
possible oriented edges with probability p1 = 1 −

(︁
1− ε

2
p∗
)︁1/r ∼ ε

2r
p∗ independently

from other choices. So E⃗1 is distributed as H⃗n,p1 . E2 is distributed like Hn,p2 (unoriented)

with p2 = (1 + ε/2)p∗. Finally, E⃗3 is distributed as H⃗n,p3 with (1 − p3)
r = 1 − p2, so

p3 ∼ p2/r. Note that if Ei (i ∈ {1, 3}) is obtained from E⃗1, E⃗3 by forgetting the orientation
of the vertices, then it is distributed as Hn,p̃i , where p̃i = 1− (1− pi)

r ∼ rpi (more precisely,
p̃1 =

ε
2
p∗ and p̃3 = p2 = (1+ ε/2)p∗). Therefore, there is no hope of embedding E1 ∪E2 ∪E3

inside of Hn,p since each one of E2 and E3 have almost the same number of edges as Hn,p,
so the union contains almost twice the needed edges. So our approach will be to consider all
edges of type 1 together with some of type 2 and some of type 3 in a way that we can build
the desired coupling.

We generate E⃗1 as the union of ρ independent copies E⃗
(1)

1 , . . . , E⃗
(ρ)

1 of H⃗n,p′1
with (1−p′1)

ρ =
1− p1, so p′1 ∼ p1/ρ = ε

2rρ
p∗. Given a vertex v in an oriented hypergraph, its out-edges are

the edges that have v as a tail. Out-degrees and other related notions are defined the obvious

way. We say v is good if its out-degree is at least d∗ in every E⃗
(1)

1 , . . . , E⃗
(ρ)

1 . Otherwise we
call vertex v bad.

Lemma 5. Let H1, H2, . . . , Hρ be independent copies of H⃗n,αp∗ for some α > 0. Let Vα

denote the set of vertices of degree less than d∗ in at least one of the Li. Then E(|Vα|) ≤ nθα

where θα = ε2(log 1/ε2 + 1 + logα)− α.
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Proof. Let pα = αp∗. Then,

E(|Vα|) ≤ nρ

d∗∑︂
k=0

(︃(︁n−1
r−1

)︁
k

)︃
pkα(1− pα)

(n−1
r−1)−k

≤ 2nρ

(︄(︁
n−1
r−1

)︁
pαe

ε2 log n

)︄ε2 logn

exp

{︃
−
(︃(︃

n− 1

r − 1

)︃
− k

)︃
pα

}︃
≤ 3nρ

(︂eα
ε2

)︂ε2 logn
n−α

= O(n1+θα).

Putting α = ε/(2rρ) in Lemma 5 and using the Markov inequality, we see that w.h.p. all
but at most a 1/nε′ fraction of the vertices are good, where ε′ = ε′(ε, r, ρ) > 0. We call this
event F1.

Now we will consider a hypergraph that contains all edges of type 1, those edges of type
2 with at most one bad vertex and those of type 3 with more than one bad vertex. More
precisely, let VG be the set of good vertices and VB = [n] \ VG the set of bad ones. Let
E ′

2 = {e ∈ E2 : |e∩ VB| ≤ 1}. We can orient each edge in E ′
2 with exactly one bad vertex by

making that bad vertex the tail, and edges with no bad vertices are oriented following any

arbitrary deterministic rule. The resulting oriented hypergraph is denoted E⃗
′
2.

Let F2 be the event that every bad vertex has degree at least ρd∗ in E ′
2 (or equivalently

out-degree at least ρd∗ in E⃗
′
2). For good vertices we have already found enough edges in E1

so we don’t care about their degrees in E2 or E3. Putting α = 1 + ε/2 in Lemma 5, we see
that θα < −1 and so Vα = ∅ w.h.p and F2 holds.

Then define E⃗
′
3 = {e ∈ E⃗3 : |e∩VB| > 1} and let E ′

3 be the unoriented version of E⃗
′
3 resulting

from ignoring orientations. Edges in E ′
2 appear with probability p2 among those edges

containing at most one bad vertex. Edges in E ′
3 appear with probability 1− (1− p3)

r = p2
among the other edges that are not elegible for E ′

2. In other words, even though each one
of E ′

2 and E ′
3 depend on the set of good vertices (and thus on E1), E

′
2 ∪ E ′

3 is distributed
as Hn,p2 and is independent of E1. Then E1 ∪ E ′

2 ∪ E ′
3 is distributed as Hn,p̃1+p2−p̃1p2 which

can be trivially included inside of Hn,p since p̃1 + p2 − p̃1p2 ≤ p̃1 + p2 = p. Hence, all it
remains to show is that in the event that F1 ∩F2 holds, we can find ρ independent copies of

Ĥn,d∗ (regarded as oriented) contained in E⃗1 ∪ E⃗
′
2 ∪ E⃗

′
3, which after forgetting orientations

we just showed is contained in Hn,p. We call such copies of Ĥn,d∗ K1, . . . , Kρ. If F1 ∩ F2

fails, just pick K1, . . . , Kρ independently from everything else so the coupling fails, but this
occurs with probability o(1).

Suppose we reveal the out-degrees of E⃗
(1)

1 , . . . , E⃗
(ρ)

1 and degrees of E ′
2 (but nothing else) and
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suppose that F1∩F2 holds. In particular, we know which vertices are good or bad. For every
vertex v ∈ [n] and “layer” i = 1, . . . , ρ, we want to pick (with replacement) d∗ out-edges of v
uniformly at random and independently of all other choices. These will be the out-edges of
v in Ki. If v is good, this is straightforward, since v has out-degree dv,i ≥ d∗ in E

(i)
1 and all

sets of dv,i out-neighbours are equally likely and independent of those of other vertices and
layers. Incorporating replacement is also straightforward. (In other words, we are coupling
d∗ random independent samples with replacement from a universe with a uniformly chosen
random subset of size dv,i ≥ d∗.)

If v is bad, picking its d∗ out-edges in each Ki is trickier. We will be using edges in E⃗
′
2 ∪ E⃗

′
3

with tail v. In particular, we will only use edges in E⃗
′
2 with exactly one bad vertex, and ignore

those with no bad vertices. Recall that edges of type 2 were originally unoriented, but we

oriented them in E⃗
′
2 so that their only bad vertex (if they have one) is the tail. We will also

use edges in E⃗
′
3 that have tail v. Most bad vertices will not pick vertices from E⃗

′
3, but some

will. Note that the edge densities of E⃗
′
2 and E⃗

′
3 are different since each out-edge of v with

only one bad vertex appears in E⃗
′
2 with probability p2 (before conditioning on degrees of E2)

while each out-edge of v with more bad vertices appears in E⃗
′
3 with probability p3 ∼ p2/r.

This is a delicate issue that complicates things and is possibly the crux of the argument.

We cannot make the density of E⃗
′
2 smaller a priori since we want to make sure that bad

vertices have enough out-edges and we cannot make the density of E⃗
′
3 larger since otherwise

the coupling with Hn,p would not work.

Let us proceed to do this carefully. Let v be a bad vertex. Let X = Xv be the set of all

possible out-edges of v in E⃗
′
2, i.e. edges with tail at v and r − 1 good vertices as heads.

Note x = |X| =
(︁|VG|
r−1

)︁
∼
(︁
n−1
r−1

)︁
. Let Y = Yv be the set of all possible out-edges of v

in E⃗
′
3, i.e. edges with tail at v that contain at least one additional bad vertex. Clearly,

y = |Y | =
(︁
n−1
r−1

)︁
− x ∼ |VB |

n
x ≤ n−ε′x by F1. Since we are also assuming that F2 holds, the

out-degree of v in E⃗
′
2 is sv ≥ ρd∗, so the set S = Sv of out-edges of v in E⃗

′
2 is a random

subset of X of size sv ≥ ρd∗. Let S ′ be a random subset of S of size exactly ρd∗ (which is
still uniformly chosen among all subsets of X of that size). Also, let T = Tv be the set of

out-edges of v in E⃗
′
3. Now t = |T | is distributed as Bin(y, p3). Our goal is to find a coupling

U ⊆ S ′ ∪ T where U = {u1, . . . , uρd∗} is obtained by uniformly and independently sampling
ρd∗ random elements of X ∪ Y (where recall X ∪ Y is the set of all possible out-edges of v)
with replacement (i.e. |U | ≤ ρd∗ and could be strictly smaller if the same edge is sampled
twice).

To do this, for each i = 1, . . . , ρd∗, let ai be an integer in [x+y] =
[︁(︁

n−1
r−1

)︁]︁
choosen uniformly

at random (and independent of other choices). We can think of the edges in X∪Y as having
distinct labels in [x + y] so we pick ui by first picking its label ai, and later revealing what
edge corresponds to that label. However, all we know so far is that edges in Y have labels
in [y] and edges in X have labels in [x + y] \ [y]. The label of each individual edge is still
undecided. The reason to do this is to see: 1) how many different edges are in U after
possible edge repetitions, and 2) how many of these fall in X or Y . If ai ≤ y, that means
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that ui will land in Y (which has probability y/(x+y) ≤ n−ε′). Otherwise, it lands in X. Let
A = {a1, . . . , aρd∗}, AX = A\[y] and AY = A∩[y]. Then u = |U | = |A|, uX = |U∩X| = |AX |
and uY = |U ∩Y | = |AY |. Let ℓ be the number of indices i = 1, . . . , ρd∗ such that ai ∈ [y] (or
equivalently ui ∈ Y ). Clearly, ℓ has distribuition Bin(ρd∗, y/(x + y)) and moreover uY ≤ ℓ
by construction. If uY ≤ t, then we can assign the uY labels in AY to a random set of edges
in T . Similarly, we can always assign the uX ≤ ρd∗ = |S ′| labels in AX to a random set of
edges in S ′. Doing so, the u1, . . . , uρd∗ are i.i.d. uniformly chosen from X ∪ Y as desired.
For all of this to work, it is enough to find a coupling in which ℓ ≤ t, or in other words
Bin(ρd∗, y/(x + y)) ≤ Bin(y, p3). Ignoring (1 + o(1)) factors in the parameters, all we need
is a coupling

Bin
(︂
ρε2 log n, 1/nε′

)︂
≤ Bin

(︄
n−ε′

(︃
n− 1

r − 1

)︃
,
1 + ε/2

r

log n(︁
n−1
r−1

)︁)︄ . (1)

The coupling in (1) exists from the lemma below with N = ρε2 log n, P = 1/nε′ , K =
r

1+ε/2

(n−1
r−1)

nε′ logn
and L = 1+ε/2

ε2rρ
.

Summarizing, for each bad vertex v we were able to sample u1, . . . , uρd∗ uniformly at random
and independently from the set of all

(︁
n−1
r−1

)︁
edges that contain v (or oriented edges with tail

at v) in a way that u1, . . . , uρd∗ are also in E ′
2 ∪ E ′

3 (assuming F1 and F2) and thus in Hn,p.
Then for each i = 1, . . . , ρ, we just pick the edges from v inKi to be u1+(i−1)d∗ , . . . , ud∗+(i−1)d∗ .
This gives the desired coupling and completes the proof of the theorem.

Lemma 6. Let 0 ≤ P ≤ 1/2 and N,K,L ∈ N with L ≥ 2. Then there is a coupling

Bin(N,P ) ≤ Bin(LKN,P/K)

Proof. Let Y =
∑︁N

i=1

∑︁LK
j=1 Yi,j with Yi,j i.i.d. Bernoulli(P/K), so Y is Bin(LKN,P/K). We

can write Y =
∑︁N

i=1 Y
′
i where Y ′

i =
∑︁LK

j=1 Yi,j. Putting Z =
∑︁N

i=1 Zi with Zi = 1Y ′
i ≥1, we

have that Zi ≤ Y ′
i and thus Z ≤ Y . Note that Z is distributed as Bin(N,P0) with

1− P0 = (1− P/K)LK ≤ e−LP ≤ e−2P ≤ 1− P

(where we used that L ≥ 2 and 0 ≤ P ≤ 1/2). Since P ≤ P0, we can easily find a Bin(N,P )
random variable X and a coupling such that X ≤ Z. As a result, X ≤ Y as desired.

3 Shamir problem with a lower bound on minimum

degree

It will be convenient to replace ε by 2ε and work with Hn,p, p = (1 + 2ε)p∗. This can be
coupled to contain the union of ρ = ⌊ρ(r)⌋ + 1 random hypergraphs H0 ∪

⋃︁ρ
i=1Hi where

H0 = Hn,(1+ε)p∗ and Hi = Hn,εm∗/ρ where m∗ = Np∗. Next let ˆ︁Γi, i = 1, 2, . . . , ρ, be
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subhypergraphs of H0 as in Theorem 4 and let Γi = ˆ︁Γi ∪Hi, i = 1, 2, . . . , ρ. The aim of this
section is to prove the following:

Theorem 7. Γ1,Γ2, . . . ,Γρ contain (independent uniform) perfect matchings (assuming that
r divides n), w.h.p.

Theorem 1 will follow from Theorem 7. Symmetry implies that the perfect matchings in the
Γi are uniform and independence follows from the construction and Theorem 4. We apply
Theorem 2 with the matchings in Γ1,Γ2, . . . ,Γρ to obtain Theorem 1, under the restriction
on n that r(r − 1) | n. This restriction will be removed in Section 4. (We are implicitly
assuming that the union of the matchings is contiguous to Hn,d. This follows from [4].)

We continue to the proof of Theorem 7 and concentrate on Γ1. Put quite simply, our proof is
a minor modification of Kahn’s proof of Theorem 3 giving the correct constant in Shamir’s
problem, see [13]. We let e1, e2, . . . , eN be a random permutation of K. Then for t ≥ 1,
we let Rt = {et+1, et+2, . . . , eN}. We let Ht denote the hypergraph with edge-set E1 ∪ Rt

where E1 = E(ˆ︁Γ1). Thus, we begin with H0 = K and in a step of the process we obtain
Ht+1 from Ht by deleting the edge et from Rt. We leave E1 untouched by this process, so
that mt = |Ht| ∼ N − t + nd∗t/N w.h.p. and mt ∈ [N − t, N − t + nd∗]. We continue for
T = N − εn log n steps. Thus the edges of Γ1 = HT are E1 ∪RT . We let E1,v denote the d∗

choices of edge by vertex v for E1.

In principle, we could just write out Kahn’s proof and make a few changes. This is a difficult
proof and it would require about another 20 pages. This does not seem necessary and instead,
we will give an outline of Kahn’s proof and indicate the places where we need to make a
change.

Some notation: The degree dHt(v) = dt(v) is the number of edges of Ht containing v and
the co-degree dHt(v, w) = dt(v, w) of v, w is the number of edges in Ht containing v, w. We
let Ht −Z denote the subgraph of Ht induced by [n] \Z where Z ∈ K. Generally speaking,
from now on, we use Fraktur fonts for events, e.g. A,B etc. and calligraphic fonts for
hypergraphs (and sets of edges) e.g. F ,H etc. (By and large we use the notation of [13].)

We use the following Chernoff bounds throughout the paper:

P(|Bin(n, p)− np| ≥ εnp) ≤ 2e−ε2np/3. (2)

P(Bin(n, p) ≥ αnp) ≤
(︂ e
α

)︂αnp
. (3)

These also hold for the hypergeometric distribution Hyp(M,K, n), whereM is the population
size, K is the number of successes in the population and n is the number of draws. Then
we claim that (2), (3) hold with Bin(n, p) replaced by Hyp(M,K, n) under the assumption
that K/M = p, see for example Hoeffding [11], Theorem 4.

Kahn [13] defines the following events: for a hypergraph H, we let Φ(H) denote the number
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of perfect matchings of H.

At =

{︄
log Φ(Ht) > log Φ(H0)−

t∑︂
i=1

γi − o(n)

}︄
where γi =

n

rmi

.

Rt ={dt(v) ∼ r|Ht|/n(∼ Dt = rmt/n) for a.e. v, dt(v, w) = o(Dt) for all v, w, ∆t = O(Dt), δt = Ω(Dt)}
where ∆, δ denote maximum and minimum degrees.

Bt ={maxr wt = O(1)}

where wt(S) = wHt(S) = Φ(Ht − S) for S ⊆ K, w̄t = N−1
∑︂

S∈([n]
r )

wt(S)

and maxr wt =
maxS⊆Vt wt(S)

w̄t

.

Kahn then writes

P

(︄⋃︂
t≤T

Āt

)︄
≤ P

(︄⋃︂
t≤T

R̄t

)︄
+
∑︂
t<T

P(AtRtB̄t) +
∑︂
t≤T

P

(︄(︄⋂︂
i<t

Bi

)︄
∩ Āt

)︄
, (4)

where T = N − βn log n as defined above. Of course,it suffices to show is that AT occurs
w.h.p.

3.1 Property Rt

Fix a vertex v. Suppose first that mt ≥ n3/2. In this case rmt/n ≫ d∗ and so Dt ∼ rmt/n.
A vertex in Ht has a degree in Rt that is hypergeometrically distributed with mean rmt/n ≥
rn1/2. The Chernoff bound (2) implies that w.h.p. every v ∈ [n] has degree asymptotic
to rmt/n. Thus dt(v) ∼ Dt for all v ∈ [n] and also that ∆t = O(Dt), δt = Ω(Dt). The
co-degree of v, w is bounded by d∗ = o(Dt) plus the co-degree of v, w in Rt. But the latter is
distributed hypergeometrically with mean O(mtn

−2). The Chernoff bounds imply that this
is o(Dt) q.s.

1 and this verifies Rt for t ≤ N − 2n3/2, say.

Now assume that mt < n3/2. Then E(|E1 ∩ Rt|) = O(n log n×mtn
−r) = O(mtn

1−r log n) =
o(1) and so E1 ∩ Rt = ∅ w.h.p. for t > N + n3/2. (E1 is unchanged and Rt decreases as the
construction proceeds.) The argument for degrees now follows that in the previous paragraph
given that the degree of a vertex v is its degree in H1 plus its degree in Rt. The Chernoff
bounds imply that dt(v) ∈ (1 ± log−1/3 n)r(mt/n + d∗) for all but o(n) vertices. Thus, this
time we only claim that dt(v) ∼ Dt for almost all v ∈ [n]. We now check co-degrees. Fix
v, w. Then, let Z1 denote the number of edges in E1 coming from v, w’s choices and let Z2

be the number of edges containing v, w due to choices of x ̸= v, w. Then Z1 is is bounded in

1A sequence of events Nn, n ≥ 0 occurs quite surely (q.s.) if P(Nn) ≥ 1−O(n−K) for any constant K.
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distribution by the sum of two copies of Bin(d∗, r−1
n−1

) and Z2 is bounded in distribution by

Bin((n− 2)d∗, (r−1)(r−2)
(n−1)(n−2)

). So

P(Z1 ≥ 4) ≤
(︃
d∗r

n

)︃4

and P(Z2 ≥ 4) ≤
(︃
r2nd∗

n2

)︃4

.

Now let ˆ︁dt(v, w) denote the co-degree of v, w in Rt. Then, where pt = (N − t+ 1)/N ,

P(∃v, w s.t. ˆ︁dt(v, w) ≥ k) ≤
(︃
n

2

)︃(︁(n−2
r−2)
k

)︁(︁
N−k

N−t+1

)︁(︁
N

N−t+1

)︁ ≤
(︃
n

2

)︃(︃(︁n−2
r−2

)︁
k

)︃
pkt ≤ n2

(︃
r2mt

kn2

)︃k

. (5)

We put k = 3r and see that dt(v, w) = o(Dt) w.h.p., for all v, w, t. Thus P
(︁⋃︁

t≤T R̄t

)︁
= o(1).

We finish this section with the observation that

if Z ∈ K and Ht ∈ Rt then Ht − Z ∈ Rt. (6)

To see this note that if v /∈ Z then its degree in Ht−Z is at most rmaxv,w dt(v, w) less than
it is in Ht.
(To avoid problems with applying (6) repeatedly, we only apply this when |Ht| → ∞.)

3.2 Property At

In this section we discuss the proof that

∑︂
t∈I

P

(︄(︄⋂︂
i<t

Bi

)︄
∩ Āt

)︄
= o(1).

The argument can be lifted from Section 3 of [13]. We have

log Φ(Ht) =

{︄
log Φ(Ht−1) et ∈ E1.

log Φ(Ht−1) + log(1− ξt) et /∈ E1.

Recall that Ht = Ht−1 if et ∈ E1. Thus,

log Φ(Ht) ≥ log Φ(H0) +
t∑︂

i=1

log(1− ξi),

where E(ξi) = γi. After this there is a careful use of martingale tail inequalities whose
validity relies on the occurence of the Bi to show that we always have ξi = O(γi). This gives
us a concentration of

∑︁
i ξi around its mean and also

∑︁
i ξ

2
i = o(n). The argument in [13]

remains valid in our case.
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3.3 Property Bt

The aim here is to prove that ∑︂
t∈I

P(AtRtB̄t) = o(1). (7)

For this, Kahn [13] introduced several new events: in the following we have dropped the
subscript t. D = DH = r|H|/n is the average degree in H = Ht; Z ranges over K and A
ranges over the edges of H.

Px = {wH((Z \ x) ∪ y) ≳ wH(Z)dH(x)/D for a.e. y ∈ [n] \ Z} .
M =

{︁
x ∈ Z and wH(Z) ≥ Φ(H)e−o(n) implies Px

}︁
.

N = {wH(A) ∼ Φ(H)/D for a.e. A ∈ H} .
F = {wH(Z) ∼ Φ(H)/D for a.e. Z ∈ K} .

Kahn proves four lemmas: for events N1,N2, the notation N1
∗

=⇒ N2 means that P(N1 ∩
¬N2) = n−ω(1).

KLemma 6.1 If H satisfies A,R then it satisfies N.

KLemma 6.2 {H satisfies A,R} ∗
=⇒ {H satisfies F}.

KLemma 6.3 For x ∈ Z ∈
(︁
[n]
2

)︁
, {H satisfies R}∧{H−Z satisfies F} ∗

=⇒ {(H, Z, x) satisfies Px}.

KLemma 6.4 If H satisfies R,F,M then it satisfies B.

The proof of (7) follows easily from these lemmas. Given A,R, KLemma 6.1 implies that we
have N. Then H−Z satisfies R (see (6)) and if wH(Z) ≥ Φ(H)e−o(n) then H−Z satisfies A.
Thus, given KLemma 6.2 we have that q.s., H−Z satisfies F whenever wH(Z) ≥ Φ(H)e−o(n).
Then, KLemma 6.3 gives us that M holds q.s. KLemma 6.4 then implies that B is satisfied
and (7) follows. Property Px is key here. Starting with Z maximizing wt, it shows that
maxrwt = O(w̄t).

Now H has a different distribution to that considered in [13]. But by looking at the proofs in
[13] we shall see that this does not matter. Klemmas 6.1 and 6.4 are actually deterministic
statements. It is only the proofs of KLemmas 6.2,6.3 that are sensitive to the distribution
of H. Fortunately, our H meets the necessary requirements. We briefly indicate the main
points of the proofs of these lemmas to show why the change in distribution does not matter.

Klemma 6.1 The proof in [13] begins with ”Here H is a general m-edge (n-vertex) r-graph
satisfying A,R.” Given H satisfying A,R, Kahn first shows that h(v,H) > log d(v)−o(1) for
a.e. vertex v, where d(v) is the degree of v in H and h(v,H) is the entropy of the distribution
of the edge containing v in a uniform random perfect matching of H. This shows that in a
random p.m. v is contained in a nearly random incident edge and N quickly follows.
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Klemma 6.2 This uses the technical assumption that

|K \ H| ≥ cN (8)

for some absolute constant c > 0. Kahn points out that without this assumption N and F
are equivalent.

Given H satisfying A,R, let θ be an arbitrary positive constant, let Φ′ = Φ(H)/D and let

Q = {wH(A) ∼ Φ′ for a.e. A ∈ H,

but wH(U) ̸= (1± 2θ)Φ′ for at least a (2θ)-fraction of the U ’s in K \ H}.

Kahn reduces the lemma to showing that

P(ARQ) < n−ω(1). (9)

Let T be chosen uniformly from
(︁H
τ

)︁
for a suitable log n ≪ τ ≪ log2 n and let F = H \ T .

Let ζ = e−τ/D and define the event

V = {wF(A) ∼ ζΦ′ for a.e. A ∈ T ,

but wF(U) ̸= (1± θ)ζΦ′ for at least a θ-fraction of the U ’s in K \ H}.

Note that (9) is implied by

P(V | ARQ) = 1− o(1). (10)

P(V) = n−ω(1). (11)

For equation (10) Kahn carefully chooses τ and then observes ”For the proof of (10) we
choose H and then T . We assume we have chosen H satisfying A,R,Q; so P now refers just
to the choice of T , and (10) will follow from P(H, T satisfies V) = 1− o(1)”.

For equation (11) we choose F = H \ T and then T . More precisely, we need to choose a
disjoint pair F , T such that F ∪ T is distributed as H and T is distributed as a uniform
random subset of F ∪ T . So we choose H′ with the same distribution as H, then choose
a random subgraph T ′ of H′ of size τ . The hypergraph H′ \ T ′ will be our F . Then
we choose T = T1 ∪ T2 independently as follows: we choose T1 of size Bin(τ, α1), α1 =
(N − t + 1)/(N − t + 1 + d∗n) from K \ F and T2 of size τ − |T1| from E1 \ F . Note that
α1 ≥ ε/(ε+ ε2) ≥ 0.99 and so |T1| ≥ 9τ/10 q.s..

Given F , let U1, U2, . . . , be an ordering of K \ F with wF(U1) ≤ wF(U2) ≤ · · · and let
Y ,Z be the first and last θ|K \ F|/3 of the Ui’s. Now at least one of Y ,Z is contained
in W = {U : wF(U) ̸= (1± θ)ζΦ′}. Otherwise, using τ ≪ |K \ H| (from (8)), we have
|W \ H| < |Y|+ |Z| < 2θ(|K \ H|+ τ)/3 < θ|K \ H|, contradicting the second part of V.

Now the first part of V implies that min {|T ∩ Y|, |T ∩ Z|} ≤ θτ/10, say. But |T1∩Y| is dis-
tributed as Bin(|T1|, θ/3) and because |T1| ≥ 9τ/10 q.s. we have that min {|T1 ∩ Y|, |T1 ∩ Z|} ≥
θτ/4 q.s. This contradiction implies that (11) holds.
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Klemma 6.3 Let H′ = {A ∈ H : A ∩ Z = {x}} and H′′ = H \ H′. Let Y = Z \ x and
W = [n] \ Z. Property R for H implies that

DG ∼ DH, where G = H− Z.

d′(x) = |H′|
(︃
=

⃓⃓⃓⃓{︃
S ∈

(︃
W

r − 1

)︃
: S ∪ x ∈ H

}︃⃓⃓⃓⃓)︃
∼ dH(x) = Ω(D). (12)

We choose H′′ first, which determines G. We can assume (12) and

wG(U) ∼ Φ′ =
Φ(G)
D

for a.e. U ∈
(︃
V \ Z

r

)︃
. (13)

After this we choose H′ and KLemma 6.3 will follow from

P(Px | (12), (13)) = 1− n−ω(1). (14)

From (13) we have that for a.e. y ∈ W ,

wF(S ∪ y) ∼ Φ′ for a.e. S ∈
(︃
W \ y
r − 1

)︃
. (15)

For a y as in (15) and a random choice of H′ (as described in Section 1), the Chernoff bounds
imply that q.s., for all but o(d′(x)) sets S such that S ∪x ∈ H, we have wF(Y ∪ y) ∼ Φ′. As
this is another place where the distribution of H matters, we go into a little more detail. So,
given y, let S denote the collection of sets S ∈

(︁
W\y
r−1

)︁
such that (15) does not hold and let

η = |S|/
(︁
n−r−1
r−1

)︁
= o(1). Then the number Z1 of edges in R1 of the form S ∪x ∈ H′, S ∈ S is

dominated in distribution by Bin(N−t+1, rη/n) and so Z1 = o(D) q.s. The same argument
shows that the number Z2 of edges in E1,v of the form S ∪ x ∈ H′, S ∈ S satisfies Z3 = o(D)
q.s. Because d′(x) = Ω(D), we have Z1 + Z2 = o(d′(x)) as required.

Now
if y ∈ W then wH(Y ∪ y) =

∑︂
S∈(W\y

r−1),S∪x∈H

wF(S ∪ y). (16)

And so wH(Y ∪ y) ≳ Φ′d′(x) ∼ wH(Z)dH(x)/D.

Klemma 6.4 We define the property

D = {If wH(Z0) > Φe−o(n) then wH(Z) ≳ wH(Z0)D
−r
∏︂
z∈Z0

dH(x) for a.e. Z ∈ K}.

After this we assert:

RM implies D. (17)

RDF implies B. (18)
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If Z0 = {x1, . . . , xr} then we obtain (17) by induction on i ∈ [r], for a.e. y1, . . . , yr ∈ [n]\Z0,
we have with Zi = (Zi−1 \ xi) ∪ yi,

∀iwH(Zi) ≳ wH(Zi−1)dH(xi)/D ≳ wH(Z0)D
−i
∏︂
j≤i

dH(xj). (19)

(The only thing to observe here is that (19) for Zi−1 implies wH(Zi) ≥ Φ(H)e−o(n), since
δH = Ω(D) implies that the r.h.s. of (19) is Ω(wH(Z0)).) This gives D, since it implies that
a.e. Z ∈ K is Zr for some y1 . . . yr supporting (19).

For (18) choose Z0 ∈ K with wH(Z0) maximum and note that wH(Z0) > Φ(H)e−o(n). Thus
D (and δH = Ω(D)) give wH(Z) = Ω(wH(Z0)) for a.e. Z ∈ K, which with F implies
Φ(H)/D = Ω(wH(Z0)). But this gives B, since wH(H) = Φ(H)/D.

4 Dealing with the divisibility problem

We use an idea of Ferber [7]. Suppose that n = (r − 1)(rn̂ + k) where 0 ≤ k < r. We can
use k = 0 as the base case for an inductive proof. So, suppose that Xk is the statement
that Hn,m contains a loose hamilton cycle w.h.p. when (r− 1) | n and n/(r− 1) ≡ k mod r

and m ≥ (1+ε)n logn
r

for any fixed ε > 0. Assume then that Xk is true. We will show using
Ferber’s idea that if n = (r− 1)(rn̂+k+1) then there exists a positive constant α such that

if m ≥ (1+ε)n logn
r

then Hn,m contains a loose Hamilton cycle with probability at least α. (In
fact, we will show that α = 1/(2r) works.) After this, we can use a result of Friedgut [9]
that says that there are no coarse thresholds with m ∼ n log n. In particular, we apply the
second remark following Theorem 2.1 of that paper to obtain w.h.p.

Following Ferber, we let p = m/N and then let p1 = log n/N and define p2 by 1 − p =
(1 − p1)(1 − p2). Fix an arbitrary edge e = {x1, x2, . . . , xk} ∈ E(H(n, p1)) and note that
such an edge exists w.h.p. Now let V ∗ = ([n] \ e) ∪ {e∗}, where e∗ is a new vertex. Note
that |V ∗| = n − r + 1 = (r − 1)(rn̂ + k). Now consider the hypergraph H∗ with vertex set
V ∗ derived from Hn,p2 by replacing an xi in any edge by e∗ and accepting it with probability
1−(1−p2)1/r

p2
∼ 1/r. The edge density of H∗ is such that we can apply the induction hypothesis

to argue that H∗ contains a loose Hamilton cycle C∗ w.h.p. Now by symmetry, there is a
probability of at least 1/r that {e∗} = e∗1 ∩ e∗2 for two consecutive edges of C∗. Suppose that
e∗i , i = 1, 2, are derived from e1, e2 of Hn,p2 . Given this there is a further probability of at
least 1− 1/r ≥ 1/2 that we can replace e∗1, e

∗
2 by e1, e, e2 to obtain a loose Hamilton cycle in

Hn,p2 .
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5 Final remarks

Kahn [14] also proved a hitting time version for perfect matchings. It is not obvious how to
tighten the current approach to get a hitting time version for loose hamilton cycles. This is
because we need a minimum degree of ρ > 2 to be able to apply Theorem 2.
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