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We show that a certain 3-dimensional assignment problem
is NP-complete. To do this we show that the following problem
is NP-complete: given bipartite graphs G,, G, with the same
sets of vertices, do there exist perfect matchings M, M, of G|,
G, respectively such that M, N\ M, =87

1. Introduction

Let P, O, R be 3 finite disjoint sets of equal
size. For u=(p,q,r)€ET=PX QX R we define
s(u)y={(p.q), (p,r), (g,r)) and for A C T we let
s(A)=U , s(u).

A set A C T is called a partial assignment if u,
v € A implies s(u) Ns(v) =9.

A total assignment A is a partial assignment
which satisfies s(4) =(P X Q)U (P X R)U
(Q X R).

In this paper we prove the NP-completeness of
the following 3-dimensional assignment problem
(3DA):
Instance: disjoint finite sets P, Q, R of equal size.
Aset SCPXQXR.

Question: does there exist a total assignment 4 C
S?

This is a special case of the integer program-
ming problem (with a,;, =0 or 1)
maximize 2 2 2 AijkXijks

i=1j=1k=1

subject to

m
Z X =1,

i=1

Jok=1,....m,

m
E‘xijkzl’ i9k=]’---’mv
j=1
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n
> xp=1, i,j=1,..,m,
k=1

xgu=0orl, ijk=1,..,m.

This has been studied by Burkard and Frohlich
[1], Leue [6] and Vlach [7].

One application of 3DA is the following timeta-
bling problem: given m teachers, m classes and m
time periods and a set S of triples ( p, g, r) where
we can schedule teacher p to meet class g in time
period r, we ask is it possible, using only triples
from S, to arrange that in each time period, each
teacher is assigned to exactly one class and vice-
versa, so that after m periods every teacher has
taught every class?

Note that this is a different timetabling prob-
lem to that discussed in Even, Itai and Shamir [2].

It is shown that 3DA is a special case of the
3-dimensional matching problem of Karp [5).

2. Complexity proof

Given disjoint finite sets P, Q of equal size, a
matching is a set M C P X Q such that |M|=|P|
and every element of P U Q occurs in exactly one
ordered pair of M.

The NP-completeness of 3DA will be shown to
follow from the NP-completeness of

DISJOINT MATCHINGS (DM)

Instance: disjoint finite sets P, Q with |P|=|Q|
and sets 4, A,CPX Q.

Question: do there exist matchings M, C A, for
i=1, 2 such that M, N M, =07

The known NP-complete problem which will be
reduced to DM is MONOTONE ONE-IN-THREE
SAT (1-3SAT) - Garey and Johnson [4, p. 259].

1-3SAT

Instance: A set V= {v(i):i=1,...,n} of boolean
variables. A set C={C,,...,C,} of
clauses such that (i) |C|=3, i=
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l,...,m, (ii) no clause contains ne-
glected variables.

Question: is there a truth assignment for ¥ such
that each clause in C has exactly one
true variable?

Theorem 2.1. 1-3SAT o« DM.

Proof. Suppose that C,={v(k):kE€K,} where
|K,|=3 for i=1,...,m. We construct the follow-
ing instance of DM:

PDE,
Q=YUEUG

where

X={x[i,jl:i=1,...2m,j=1,...,n},

Y={ylijl:i=1,...2m,j=1,...,n},

D={d[i]:i=1,...,m},

E= {e[i]:i=1,...,m},

F= {f[i.k]:i=l.....m,kEK‘.},

G={gli,k]:i=1,...m keEK,)}.
Definition of A,. For j=1,....n let

VI ={(x[ij]yli,/D):i=1,....2m}

and

711 = (Gl y i+ 1D): i= 1, 2m)

(y[2m+1,7]1=y[1,/]) then

4= U (V7107 1))

j=1

U {(d[i],eli]):i=1,....m}

U {(fli.k], gli.k]):i=1,....m, kEK,}.
We note (see Fig. 1) that

if MCA, is a matching then for j=1,...,n we

x[1,3] x[2,3] x[3,3] x[4,3]
Y N N N
N
AN \\ N \\
N AN \\ \
2 ---X
& AN A ) 2l N\
AN L
Joves b i \\
i A \ \
y(1,3] y[2,3] y[3,3] y[4,3]

X(Sfj]

v[5,i]

have
MDOV[jlandMNV[j]=0

(models v( j) = true) (2.1)
or

MNC[j]l=%and MD V [ ]
(models v( j) = false).

Definition of A,. For i=1,...,m let

cslil= U {(x[2i=1,k], y[2i—1,k]),
kEK,

(x[2i—1,%],y[2i, k]),
(/i k], y[2i,k]),
(fLisk],eli]), (a[i]. y[2i =1, k]),
(x[2i, k], g[i. k])}
(see Fig.2).
For a given j let
{(x[i,j]:j & K, wheret=[i/2]}
= {x[i(r).j]:r= l....,sj}

(defines i(1),i(2),...) where i(1) <i(2) < --- <i(s;)
and let

z[ 1= {(«LiCr+ 0,41, 2Li(r) D r= 1,055
where i(s;+1)=i(1). )

Note that Z[jIN(V[j]U V[j])=# provided
that
Assumption. No variable v(j) occurs in exactly
m — 1 clauses.

We can make the above assumption because
there is a polynomial time algorithm that solves all
instances of 1-3SAT that do not satisfy the as-

x[6,7] x[7,3] x[8,7]
N \ Noaiem T E
N R T i R
N b e |2 TN N
- -\ ~ \
% \\ \
N
N N N
N\ \\ N
N Ry N
v[6,3] y[7.,3] v[s,3l

Fig. 1. A; (m =4; continuous edges are in V[ j]; broken edges are in V[ j)).

il
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x[2i-1,q]  f£[i,q] =x[2i-1,r]

£[4i,p]

X[Zi_l IP]

£li,r] ali)

x[2i,p) =x[2i,q] x[2i,r]

v[2i-1,p] yl2i,p] yl2i-1,q] y[2i,q] y[2i-1,r]

Fig. 2. CS[i] (K, ={p.q.r}).

sumption.
Now let Z= U7 Z[j] and let 4, =
) ;’;,CS[:‘} UZ Notethat ZNA4,=60.
Fori=1,..., m and k € K, define (see Fig. 3)

CM[i k] = _U_ {(x[2i.j]. glij])}
U {(d[i],y[2i—1,k]),
(x[2i—1,k],y[2i,k]), (fli. k], e[i])}
u U {(x[2i=1,/].p[2i = 1,4]),

JEK— (K}
(fli.5)2[20,4]))
We next note that

if M C A, is a matching then for i=1,..., m there
exists k, € K, such that M N CS[i] = CM[i, k,]{2.2)

Note also the following properties of CM[i, k]:

CM[i, k] NV[k]=8, (2.3a)
CM[i, k] NV [k]+89, (2.3b)
CM[i, k]nV[jl#0,jEK, — {k}, (2.3¢)
CM[i, k]NV[j]l=0,/€K — {k}, (2.3d)
CM[i, kN (V[jluV[j]) =0, &K, (2.3¢)

We must now show that 1-3SAT has a solution

x[2i-1,p] £[i,p] x[2i-1,q] £[i,q] x[2i-1,r]

yl2i-1,p)  yl2i,p]l vyl2i-1,q4] vyl[2i,q] ¥y[2i-1,r]

Fig. 3. CM[i. r] (K, ={p.q.r)).

v[2i,r) el[i)

gli,pl] gli,q) gli,r]

if and only if the above example of DM has a
solution.

Suppose first that 1-3SAT has a satisfying as-
signment of truth values. In one such assignment
let

T={j:vo(j)=true} and T={l,...,n}—T.
Fori=1,...,m we can by assumption define k, by
TNK,={k,}. Then let

M, = U Vijlu U V]

u{(d[i].eli]):i=1.....m}
U{(f[i k). gli.k]):i=1,....m kEK}

and
m
M= U cM[i k] u z.
i=1
That M, N M, =9 follows from (2.3) and Z N A4,
=0
Conversely suppose we are given disjoint
matchings M, C A, fori=1,2 Let T={j: V[/]C
M,} and assign v(j) = true for jeT and v(j)=
false forjE T.
Next (using (2.2)) let k, be defined by M, N

£(i,r] ali] x[2i,p] x[2i,q] x|Z21,r)

yl2i,r] e[i] gli,p] gli.q] gli,r]
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CS[i1=CM[i, k] for i=1,...,m. It follows from
(2.3b) that M, N V[k,]#@. Thus if M, D V[k,;] we
would have M, N M, # @. Thus M, Z V[k,] and so
by (2.1) we have M, D V[k,] and k,€T for i=
1,...,m. Now for j € K, — {k;} we use (2.3c) and
(2.1) in a similar manner to show that j & T. Thus
the truth value assignment satisfies all clauses in
the required manner.

Corollary 2.2. 3DA is NP-complete.

Proof. We show that DM o 3DA. Thus let p=
{Prs-sPm}» @={q1s---+Gm}> A1, A, define an ins-
tance of DM. Let R={l,...,m} and let $=
U™, S;CPXQXR where fori=1,2, §;=4,X
{i} and for i=3,...,m, §;=P X Q X {i}.

We need only note that any total assignment
A C S induces m disjoint matchings M; = {(p, q):
(p,q,i)E A} and that given a disjoint pair of
matchings M; C A, for i=1, 2 we can easily ‘ex-
tend’ them to a complete assignment. Indeed (P X
Q) — (M, U M,) defines an m — 2 regular bipartite
graph which can be decomposed into m — 2 -dis-
joint matchings M, ..., M,,. Then 4= U L (M, X
{i}) forms a total assignment and 4 C S.

We note next that 3DA is a special case of

3-dimensional matching (3DM)

3DM

Instance: disjoint finite sets X, Y, Z of equal size.
Aset TCXXYXZ.

Question: does there exist B C T such that each
element of XU Y U Z occurs in exactly
one member of B?

Remark 2.3. 3DA o« 3DM.

Given an instance P, Q, R, S of 3DA we
proceed as follows: Let X=PX Q, Y=PXR,
Z=Q@XR and T={({(p,q) (p,r) (g, 1))
(p,q,r)E€S}. It is clear that S contains a total
assignment if and only if T contains a matching.

We finally note another hard special case of

3DM that can be deduced from 3DA: there exist

ACXXY, BCXXZ, CCYXZ such that T=

{(x,y,2): (x,y)EA,(x,z)EB and (y,z) €EC}. -

A practical instance of the above problem is
described in Frieze and Yadegar [3).

This leads to an easy proof of NP-completeness
of PARTITION INTO TRIANGLES (Garey and
Johnson [4, pp. 68-69]) even when the graph
under consideration is tripartite.

3. Complexity of DM

The instance of DM constructed in Theorem
2.1 has the following property: the bipartite graphs
(P,Q,4,) for i=1, 2 are both planar and no
vertex has degree exceeding 3.

If we restrict the instance of DM to those with
vertex degrees bounded by 2 then the problem
becomes polynomially solvable even if we have to
find disjoint matchings M; of graphs (P, Q, A4;) for
i=1,..,k.
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