Homework 7: due December 4

- 1. Show that if X denotes the number of cycles in a random permutation of [n] then $\mathbb{P}(X \ge t) \le \mathbb{P}(Binomial(t, 1/2) \le \lceil \log_2 n \rceil)$. Deduce that for every constant L > 0, there exists a constant K > 0, such that $\mathbb{P}(X \ge K \log n) \le n^{-L}$. (Hint: consider the size of the cycle C containing vertex 1 and the number of cycles in the remaining permutation on $[n] \setminus C$.)
- 2. For a graph G = (V, E) let $f: V \to V$ be a *G*-mapping if (v, f(v)) is an edge of *G* for all $v \in V$. Let *G* be a graph with *n* vertices and minimum degree $(\frac{1}{2} + \varepsilon)n$ for some fixed $\varepsilon > 0$. Let $H = \bigcup_{i=1}^{k} H_i$ where (i) k = O(1) is sufficiently large, and (ii) H_1, H_2, \ldots, H_k are independent uniform random *G*-mappings. Show that w.h.p. *H* is connected.
- 3. In the random digraph $G_{k-in,k-out}$ each $v \in [n]$ independently chooses k uniformly random in-neighbors and k uniformly random out-neighbors. Show that $G_{k-in,k-out}$ is k-strongly connected for k = O(1) is sufficiently large.