Homework 2: due September 11

Suppose that 0 n,p</sub> has diameter two.
Solution: First of all note that w.h.p. there exist pairs v, w that are non-adjacent. (ℙ(G_{n,p} = K_n) = (1 - p)⁽ⁿ⁾/₂ = o(1).) So w.h.p. the diameter is at least 2.

Now if for every pair of non-adjacent vertices v, w we can find a vertex x such that $\{v, x\}$ and $\{w, x\}$ are edges then the diameter is at most 2. So,

$$\mathbb{P}(\text{Diameter}(G_{n,p}) > 2) \le \binom{n}{2} (1-p^2)^{n-2} = o(1).$$

2. Let $f : [n] \to [n]$ be chosen uniformly at random from all n^n functions from $[n] \to [n]$. Let $X = \{j : \not\exists i \ s.t. \ f(i) = j\}$. Show that w.h.p. $|X| \approx e^{-1}n$.

Solution:

$$\mathbb{E}(|X|) = n\left(1 - \frac{1}{n}\right)^n = e^{-1}n + O(1).$$
$$\mathbb{E}(|X|(|X| - 1)) = \sum_{i=1}^n \sum_{j=1, j \neq i} \left(1 - \frac{2}{n}\right)^n$$
$$= n(n-1)\left(1 - \frac{2}{n}\right)^n \le \mathbb{E}(|X|)^2.$$

Then

$$\mathbb{P}(||X| - \mathbb{E}(|X|| \ge \varepsilon |X|) \le \frac{\mathbb{E}(|X|^2) - \mathbb{E}(|X|)^2}{\varepsilon^2 \mathbb{E}(|X|)^2} \le \frac{1}{\varepsilon^2 \mathbb{E}(|X|)}$$

Putting $\varepsilon = n^{-1/3}$ we see that w.h.p. $|X| = e^{-1}n + O(n^{2/3})$.

3. Suppose that $p = \frac{c}{n}$ where c > 1 is a constant. Show that w.h.p. the giant component of $G_{n,p}$ is non-planar. (Hint: Argue that the number of edges in the giant is asymptotically equal to (c + x)/2times the number of vertices in the giant. You can assume that c + x > 2. Remove edges from the giant so that the girth is large. Now use Euler's formula for the case when the graph has large girth. Note also that an ν -vertex planar graph of girth g has at most $\nu(1 - 2/g)^{-1}$ edges.)

Solution: The density of the giant (ratio of edges to vertices) is w.h.p. asymptotically equal to $((1 - x^2/c)cn/2)/(1 - x/c) = (c + x)/2 = 1 + \xi$ where $\xi = \xi(c) > 0$. The expected number of edges X on cycles of length at most g is

$$\sum_{i=3}^{g} \binom{n}{i} \frac{(i-1)!}{2} \left(\frac{c}{n}\right)^{i} \sim \sum_{i=3}^{g} \frac{c^{i}}{2i} < c^{g}$$

The Markov inequality implies that $X = O(\log n)$ w.h.p. Let $g = 3/\xi$. Then after removing $O(\log n)$ edges we have a graph of girth at least g and with density $\sim (1+\xi) > (1-2/g)^{-1}$. This is not planar.