Homework 7: Solutions

7.6.9 Suppose that H is obtained from $G_{n, 1 / 2}$ by planting a clique C of size m $=n^{1 / 2} \log n$ inside it. describe a polynomial time algorithm that w.h.p. finds C. (Think that an adversary adds the clique without telling you where it is).
Solution: First observe that w.h.p. all vertices of $G_{n, 1 / 2}$ have degrees in the range $n / 2 \pm O\left((n \log n)^{1 / 2}\right)$. This remains true in H for vertices not in C. Vertices in C will w.h.p. have their degrees increased by $(1 / 2-$ $o(1)) n^{1 / 2} \log n$ and so they will constitute the $n^{1 / 2} \log n$ vertices of largest degree in H.
7.6.10 Show that if $d>2 k \log k$ for a positive integer $k \geq 2$ then w.h.p. $G(n, d / n)$ is not k-colorable.
Hint:Consider the expected number of proper k-coloring's:

$$
\sum_{n_{1}+\cdots+n_{k}=n}\binom{n!}{n_{1}!\cdots n_{k}!}(1-p)^{\sum_{i} n_{i}\left(n_{i}-1\right) / 2}
$$

Solution: Let $d=2 k \log k+2 \epsilon$. The expected number of k-colorings can be bounded by

$$
\begin{aligned}
& \quad \sum_{n_{1}+\cdots+n_{k}=n}\binom{n}{n_{1}, n_{2}, \ldots, n_{k}}(1-p)^{\sum_{i=1}^{k}\binom{n_{i}}{2}} \\
& \leq \sum_{n_{1}+\cdots+n_{k}=n}\binom{n}{n_{1}, n_{2}, \ldots, n_{k}} \exp \left\{-\frac{d}{n} \sum_{i=1}^{k}\binom{n_{i}}{2}\right\} \\
& \leq \sum_{n_{1}+\cdots+n_{k}=n}\binom{n}{n_{1}, n_{2}, \ldots, n_{k}} \exp \left\{-\frac{d}{n} \cdot k\binom{n / k}{2}\right\} \\
& \leq \sum_{n_{1}+\cdots+n_{k}=n}\binom{n}{n_{1}, n_{2}, \ldots, n_{k}} \exp \{-(\log k+\epsilon) n\} \\
& \leq k^{n} \exp \{-(\log k+\epsilon) n\} \\
& =o(1)
\end{aligned}
$$

9.4.2 Show that for every $\epsilon>0$ there exists $c_{\epsilon}>0$ such that the following is true w.h.p. If $c \geq c_{\epsilon}$ and $p=c / n$ and we remove any set of at most $(1-\epsilon) c n / 2$ edges from $G_{n, p}$, then the remaining graph contains a component of size at least $\epsilon n / 4$.
Solution: Let $m=1 / \epsilon$ and let $S_{1}, S_{2}, \ldots, S_{m}$ be a partition of $[n]$ into sets of size between $\epsilon n / 4$ and $\epsilon n / 2$. (We will omit rounding errors to simplify the explanation.) In K_{n}, there are at least $\nu_{\epsilon}=\binom{n}{2}-\frac{\epsilon n^{2}}{4} \sim \frac{n^{2}}{2}\left(1-\frac{\epsilon}{2}\right)$ edges that join different sets in the partition. Call these edges joiners.

Now there are at most $\left(\frac{4}{\epsilon}\right)^{n}$ such partitions and so using the Chernoff bounds we see that for $\eta=\epsilon / 4$
$\mathbf{P}\left(\exists\right.$ partition with fewer than $(1-\eta) c \nu_{\epsilon} / n$ joiners $)$

$$
\leq\left(\frac{4}{\epsilon}\right)^{n} \exp \left\{-\frac{c \eta^{2}}{4}\left(1-\frac{\epsilon}{2}\right)\right\}=o(1)
$$

for large enough c.
So w.h.p., after deletion of edges, every such partition still contains at least

$$
\frac{(1-\eta) c \nu_{\epsilon}}{n}-\frac{(1-\epsilon) c n}{2}=\frac{c n}{2}\left(\left(1-\frac{\epsilon}{4}\right)\left(1-\frac{\epsilon}{2}\right)-(1-\epsilon)\right)>0 .
$$

But if there is no component of size at least $\epsilon n / 4$ after deletion of edges, then we can find such a partition with no joiners.

