Homework 5: Solutions

6.7.4 Applying Hall's theorem and defining $L=\lceil 2 \log n\rceil$,

$$
\begin{aligned}
\mathbf{P}(\text { no p.m. }) & \leq \sum_{k=L}^{n}\binom{n}{k}\binom{n}{k-1}\left(\frac{\binom{k-1}{L}}{\binom{n}{L}}\right)^{k} \\
& \leq \sum_{k=L}^{n}\left(\frac{n e}{k}\right)^{k}\left(\frac{n e}{k-1}\right)^{k-1}\left(\frac{k-1}{n}\right)^{L k} \\
& \leq \sum_{k=L}^{n}\left(\left(\frac{k}{n}\right)^{L-2} \cdot e^{2} \cdot\left(\frac{k-1}{k}\right)^{L}\right)^{k} \\
& =\sum_{k=L}^{n} u_{k}
\end{aligned}
$$

Now if $k=(1-\epsilon) n$ then we have $(k / n)^{L-2} \leq e^{-\epsilon(L-2)} \leq e^{-3+o(1)}$ if $\epsilon \geq 3 / L$. We deduce from this that

$$
\sum_{k=L}^{n_{0}} u_{k}=o(1) \text { where } n_{0}=n-\frac{4 n}{L}
$$

So we need to be more careful for $k>n_{0}$. If there is a set of size k on one side of the partition with at most $k-1$ neighbors, then there is a set X of size $\ell=n-k+1$ on the other side of the partition with at most $\ell-1$ neighbors. We estimate this by

$$
\begin{equation*}
\binom{n}{\ell-1} \mathbf{P}\left(\operatorname{Bin}\left(n, 1-\left(1-\frac{\ell}{n}\right)^{L}\right) \leq \ell-1\right) \tag{1}
\end{equation*}
$$

We choose X in $\binom{n}{\ell-1}$ ways and then $1-\left(1-\frac{\ell}{n}\right)^{L}$ lower bounds the probability that a vertex chooses a neighbor in X.
Summing over $\ell \leq \ell_{0}=n-n_{0}+1$, this is at most

$$
\begin{align*}
& 2 \sum_{\ell=1}^{\ell_{0}}\binom{n}{\ell-1}^{2}\left(1-\left(1-\frac{\ell}{n}\right)^{L}\right)^{\ell-1}\left(1-\frac{\ell}{n}\right)^{L(n-\ell+1)} \tag{2}\\
\leq & 2 \sum_{\ell=1}^{\ell_{0}}\left(\frac{n e}{\ell-1}\right)^{2 \ell-2}\left(\frac{\ell L}{n}\right)^{\ell-1} e^{-L \ell(1+o(1))} \\
\leq & 2 \sum_{\ell=1}^{\ell_{0}}\left(\frac{n e^{2} \ell L}{\ell-1}\right)^{\ell-1} n^{-(2-o(1)) \ell} \\
= & o(1)
\end{align*}
$$

Explanation for (2): the binomial probability in (1) is dominated by the $\ell-1$ term, leading to the factor 2 .
6.7.9 Following the hint we partition $[n]$ into 3 sets A, B, C of size $n / 3$. The bipiartite graph H induced by A, B is distributed as $G_{n / 3, n / 3, p}$ and since $\frac{n}{3} p \gg \log \frac{n}{3}$ this graph has a perfect matching w.h.p. Fix a perfect matching M of H and define another random bipartite graph K with vertices M, C and an edge (e, x) for each $e=\{u, v\} \in M, x \in C$ such that the edges $\{x, u\},\{x, v\}$ both exist. The random graph K is distributed as $G_{n / 3, n / 3, p^{2}}$ and since $\frac{n}{3} p^{2} \gg \log \frac{n}{3}$ this graph has a perfect matching w.h.p. This perfect matching corresponds to $n / 3$ vertex disjoint triangles.
6.7.10 Arguing as in the proof of Theorem 6.1 we see that

$$
\mathbf{E} Y \leq 2 \sum_{k=2}^{n / 2}\binom{n}{k}\binom{n}{k-1}\binom{k(k-1)}{2 k-2} p^{2 k-2}(1-p)^{k(3 n / 4-k)}
$$

The only change here is that we can only guarantee that S has at least $k(3 n / 4-k)$ neighbors not in T. Continuing,

$$
\begin{aligned}
\mathbf{E} Y & \leq 2 \sum_{k=2}^{n / 2}\left(\frac{n e}{k}\right)^{k}\left(\frac{n e}{k-1}\right)^{k-1}\left(\frac{K k e \log n}{2 n}\right)^{2 k-2} n^{-K k(3 / 4-k / n)} \\
& \leq \frac{n^{2}}{\log ^{2} n} \sum_{k=2}^{n / 2}\left(\frac{n e}{k} \cdot \frac{n e}{k-1} \cdot\left(\frac{K k e \log n}{2 n}\right)^{2} \cdot n^{-K / 2}\right)^{k} \\
& =o(1),
\end{aligned}
$$

if $K \geq 4$.

