
Homework 4: Solutions

3.3.2 Let Zk denote the number of vertices of degree k in the giant component
of Gn,p. Fix a vertex, say vertex n and consider H1 = Gn−1,p. We know
that w.h.p. H1 will have a giant component C of size ≈

(
1− x

c

)
n. Then,

n will be part of the giant component of Gn,p and have degree k iff (i) it
has degree k and (ii) at least one its neighbors is in C. Let pk denote the
probability of (i), (ii). (This assumes that H1 has a giant and this fails
to happen with probability o(1) = o(pk).) Now the probability of (i) is

asymptotically equal to ce−c

k! and given (i), the neighbors of n will be a
uniform random k-subset of [n − 1]. And so the probability (ii) fails to

hold, given (i) is asymptotically equal to
(
x
c

)k
. Thus pk is asymptotically

equal to cke−c

k!

(
1−

(
x
c

)k)
. This shows that E(Zk) ≈ npk.

To show Zk ≈ npk w.h.p. we can use the second moment method. For this
we consider H2 = Gn−2,p and the probability that both n, n−1 are degree
k vertices of the giant. This is at most p + (1 + o(1)p2

k = (1 + o(1))p2
k,

where p accounts for n, n − 1 being adjacent. Thus Var(Zk) ≈ E(Zk)2

and the Chebyshev inequality finishes the proof.

4.3.4 Fix v ∈ [n]. Let Ai, i = 0, . . . , i0 =
⌊

2 logn
3 log d

⌋
be the event that |Si(v)| ∈

[(d/2)i, (2d)i] for all v ∈ [n]. Clearly A0 is true. Now if p = m/N so that
d ≈ np then in Gn,p,

P(¬Ai+1 | Si(v),Aj , j ≤ i) = P

Bin
(n−

∑
j=0

i|Sj(v)|, 1− (1− p)|Si|

 .

Observe that di0 ≈ n2/3. Given the conditioning,
∣∣∣∑j=0 i|Sj(v)|

∣∣∣ = o(n)

and 1− (1− p)|Si| ≈ |Si|p. Thus,

P(¬Ai+1 | Si(v),Aj , j ≤ i) = P (Bin ((n− o(n), (1− o(1))|Si|p)) .

The expected value of the binomial in the above is ≈ d|Si| and applying
the Chernoff bounds we get that

P(¬Ai+1 | Si(v),Aj , j ≤ i) ≤ e−Ω(d|Si|) and d|Si|)� log n.

This implies that

P(¬Ai+1 | Aj , j ≤ i) ≤ n−ω where ω →∞.

But, then

P(¬Ai) ≤ P(¬A1) + P(¬A2 | ¬A1) + P(¬A3 | A1,A2) · · · ≤ in−ω.

and we can use the union bound to deal with all choices of v, i.
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4.3.5 Given A1 we choose d/2 vertices v1, v2, . . . , vd/2 in S1(v). We then argue

that w.h.p. we can find at least (d/2)i0−1 = νd = Ω(n2/3) vertices V1 at
distance i0 − 1 from v1. We then repeat the argument with respect to v2,
but this time we do avoid the O(n2/3) vertices W1 used in the construction
of V1. The probability bounds are hardly affected by this restriction. In
general, when dealing with vi we construct a set Vi of Ω(n2/3) vertices at
distance i0 − 1, while avoiding the at most O(dn2/3) = o(n) vertices in
W1 ∪ · · · ∪Wi−1.

Now fix any other vertex w and construct corresponding sets V̂i, i =
1, 2, . . . , d/2 avoiding any vertex in W1 ∪ · · · ∪Wd/2. The possible edges

between Vi and V̂i are unconditioned by this construction and so

P(∃i : there is no Vi : V̂i edge) ≤ d(1−p0)ν
2
d = O(n1/3−εe−Ω(dn1/3)) = o(1).

We can therefore select d/2 edges, one from each Vi : V̂i, that define
internally vertex disjoint paths as required.
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