Homework 4: Solutions

3.3.2 Let Z_{k} denote the number of vertices of degree k in the giant component of $G_{n, p}$. Fix a vertex, say vertex n and consider $H_{1}=G_{n-1, p}$. We know that w.h.p. H_{1} will have a giant component C of size $\approx\left(1-\frac{x}{c}\right) n$. Then, n will be part of the giant component of $G_{n, p}$ and have degree k iff (i) it has degree k and (ii) at least one its neighbors is in C. Let p_{k} denote the probability of (i), (ii). (This assumes that H_{1} has a giant and this fails to happen with probability $o(1)=o\left(p_{k}\right)$.) Now the probability of (i) is asymptotically equal to $\frac{c e^{-c}}{k!}$ and given (i), the neighbors of n will be a uniform random k-subset of $[n-1]$. And so the probability (ii) fails to hold, given (i) is asymptotically equal to $\left(\frac{x}{c}\right)^{k}$. Thus p_{k} is asymptotically equal to $\frac{c^{k} e^{-c}}{k!}\left(1-\left(\frac{x}{c}\right)^{k}\right)$. This shows that $\mathbf{E}\left(Z_{k}\right) \approx n p_{k}$.
To show $Z_{k} \approx n p_{k}$ w.h.p. we can use the second moment method. For this we consider $H_{2}=G_{n-2, p}$ and the probability that both $n, n-1$ are degree k vertices of the giant. This is at most $p+\left(1+o(1) p_{k}^{2}=(1+o(1)) p_{k}^{2}\right.$, where p accounts for $n, n-1$ being adjacent. Thus $\operatorname{Var}\left(Z_{k}\right) \approx \mathbf{E}\left(Z_{k}\right)^{2}$ and the Chebyshev inequality finishes the proof.
4.3.4 Fix $v \in[n]$. Let $\mathcal{A}_{i}, i=0, \ldots, i_{0}=\left\lfloor\frac{2 \log n}{3 \log d}\right\rfloor$ be the event that $\left|S_{i}(v)\right| \in$ $\left[(d / 2)^{i},(2 d)^{i}\right]$ for all $v \in[n]$. Clearly \mathcal{A}_{0} is true. Now if $p=m / N$ so that $d \approx n p$ then in $G_{n, p}$,

$$
\mathbf{P}\left(\neg \mathcal{A}_{i+1} \mid S_{i}(v), \mathcal{A}_{j}, j \leq i\right)=\mathbf{P}\left(\operatorname{Bin}\left(\left(n-\sum_{j=0} i\left|S_{j}(v)\right|, 1-(1-p)^{\left|S_{i}\right|}\right)\right)\right.
$$

Observe that $d^{i_{0}} \approx n^{2 / 3}$. Given the conditioning, $\left|\sum_{j=0} i\right| S_{j}(v)| |=o(n)$ and $1-(1-p)^{\left|S_{i}\right|} \approx\left|S_{i}\right| p$. Thus,

$$
\mathbf{P}\left(\neg \mathcal{A}_{i+1} \mid S_{i}(v), \mathcal{A}_{j}, j \leq i\right)=\mathbf{P}\left(\operatorname{Bin}\left(\left(n-o(n),(1-o(1))\left|S_{i}\right| p\right)\right)\right.
$$

The expected value of the binomial in the above is $\approx d\left|S_{i}\right|$ and applying the Chernoff bounds we get that

$$
\left.\mathbf{P}\left(\neg \mathcal{A}_{i+1} \mid S_{i}(v), \mathcal{A}_{j}, j \leq i\right) \leq e^{-\Omega\left(d\left|S_{i}\right|\right)} \text { and } d\left|S_{i}\right|\right) \gg \log n
$$

This implies that

$$
\mathbf{P}\left(\neg \mathcal{A}_{i+1} \mid \mathcal{A}_{j}, j \leq i\right) \leq n^{-\omega} \text { where } \omega \rightarrow \infty
$$

But, then

$$
\mathbf{P}\left(\neg \mathcal{A}_{i}\right) \leq \mathbf{P}\left(\neg \mathcal{A}_{1}\right)+\mathbf{P}\left(\neg \mathcal{A}_{2} \mid \neg \mathcal{A}_{1}\right)+\mathbf{P}\left(\neg \mathcal{A}_{3} \mid \mathcal{A}_{1}, \mathcal{A}_{2}\right) \cdots \leq i n^{-\omega}
$$

and we can use the union bound to deal with all choices of v, i.
4.3.5 Given \mathcal{A}_{1} we choose $d / 2$ vertices $v_{1}, v_{2}, \ldots, v_{d / 2}$ in $S_{1}(v)$. We then argue that w.h.p. we can find at least $(d / 2)^{i_{0}-1}=\nu_{d}=\Omega\left(n^{2 / 3}\right)$ vertices V_{1} at distance $i_{0}-1$ from v_{1}. We then repeat the argument with respect to v_{2}, but this time we do avoid the $O\left(n^{2 / 3}\right)$ vertices W_{1} used in the construction of V_{1}. The probability bounds are hardly affected by this restriction. In general, when dealing with v_{i} we construct a set V_{i} of $\Omega\left(n^{2 / 3}\right)$ vertices at distance $i_{0}-1$, while avoiding the at most $O\left(d n^{2 / 3}\right)=o(n)$ vertices in $W_{1} \cup \cdots \cup W_{i-1}$.
Now fix any other vertex w and construct corresponding sets $\widehat{V}_{i}, i=$ $1,2, \ldots, d / 2$ avoiding any vertex in $W_{1} \cup \cdots \cup W_{d / 2}$. The possible edges between V_{i} and \widehat{V}_{i} are unconditioned by this construction and so
$\mathbf{P}\left(\exists i\right.$: there is no $V_{i}: \widehat{V}_{i}$ edge $) \leq d\left(1-p_{0}\right)^{\nu_{d}^{2}}=O\left(n^{1 / 3-\epsilon} e^{-\Omega\left(d n^{1 / 3}\right)}\right)=o(1)$.
We can therefore select $d / 2$ edges, one from each $V_{i}: \widehat{V}_{i}$, that define internally vertex disjoint paths as required.

