
Homework 3: Solutions

2.4.14 The expected number of sets of size at most s that contain at least ks/2
edges is at most
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if say, s ≤ s0 = θn where θ = 1
2 (e1+2/kc/k)−k/(k−2)n.

This means that w.h.p. every set of size at most s0 contains a vertex with
fewer than than k neighbors in the set. Thus w.h.p. either the k-core is
empty or it has size greater than s0.

2.4.15 The expected number of vertices Xg on cycles of length at most g is
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So, w.h.p. Xg ≤ cg log n. If c = 1 + ε we take g = 10/ε and remove the
vertices on short cycles to obtain a graph H. W.h.p. we have a graph
with v = n − O(log n) vertices and girth greater than g. W.h.p., it also
has at least
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edges. (1)

If Gn,p is planar then so is H. Suppose that H has v vertices, e edges and
f faces. Then we have

v − e+ f = 2 and 2e ≥ gf.

The first equation is Euler’s formula and the inequality follows from the
fact that every edges is on exactly 2 faces. So,
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which contradicts (1).

2.4.17 let Xk denote the number of copies of Ck in Gn,p and assume for now
that p = ω/n where ω = o(log n). Then we have
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Next, if Yk,t denotes the number of k-cycles in Kn that share t edges with
the cycle (1, 2, . . . , k, 1), then
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The result follows from the Chebyshev inequality. If ω grows faster than
claimed then we use monotonicity.
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