Homework 3: Solutions

2.4.14 The expected number of sets of size at most s that contain at least $k s / 2$ edges is at most

$$
\begin{aligned}
\sum_{t=2 k+1}^{s}\binom{n}{t}\binom{\binom{t}{2}}{k t / 2} p^{k t / 2} & \leq \sum_{t=2 k+1}^{s}\left(\frac{n e}{t}\right)^{t}\left(\frac{t^{2} e}{k t}\right)^{k t / 2} p^{k t / 2} \\
& =\sum_{t=2 k+1}^{s}\left(\left(\frac{t}{n}\right)^{k / 2-1}\left(\frac{e^{1+2 / k} c}{k}\right)^{k / 2}\right)^{t}=o(1)
\end{aligned}
$$

if say, $s \leq s_{0}=\theta n$ where $\theta=\frac{1}{2}\left(e^{1+2 / k} c / k\right)^{-k /(k-2)} n$.
This means that w.h.p. every set of size at most s_{0} contains a vertex with fewer than than k neighbors in the set. Thus w.h.p. either the k-core is empty or it has size greater than s_{0}.
2.4.15 The expected number of vertices X_{g} on cycles of length at most g is

$$
\sum_{k=3}^{g}\binom{n}{k} \frac{k!}{2}\left(\frac{c}{n}\right)^{k} \leq \sum_{k=3}^{g} \frac{c^{k}}{2} \leq c^{g}
$$

So, w.h.p. $X_{g} \leq c^{g} \log n$. If $c=1+\epsilon$ we take $g=10 / \epsilon$ and remove the vertices on short cycles to obtain a graph H. W.h.p. we have a graph with $v=n-O(\log n)$ vertices and girth greater than g. W.h.p., it also has at least

$$
\begin{equation*}
(1+o(1)) \frac{(1+\epsilon) n}{2}-\frac{X_{g} \log n}{\log \log n}=(1+o(1)) \frac{(1+\epsilon) n}{2} \text { edges. } \tag{1}
\end{equation*}
$$

If $G_{n, p}$ is planar then so is H. Suppose that H has v vertices, e edges and f faces. Then we have

$$
v-e+f=2 \text { and } 2 e \geq g f
$$

The first equation is Euler's formula and the inequality follows from the fact that every edges is on exactly 2 faces. So,

$$
e \leq v\left(1-\frac{2}{g}\right)^{-1} \leq(n-o(n))(1+3 \epsilon) 10
$$

which contradicts (1).
2.4.17 let X_{k} denote the number of copies of C_{k} in $G_{n, p}$ and assume for now that $p=\omega / n$ where $\omega=o(\log n)$. Then we have

$$
\mathbf{E}\left(X_{k}\right)=\binom{n}{k} \frac{(k-1)!}{2} p^{k} \sim \frac{\omega^{k}}{2 k} \rightarrow \infty
$$

Next, if $Y_{k, t}$ denotes the number of k-cycles in K_{n} that share t edges with the cycle $(1,2, \ldots, k, 1)$, then

$$
\begin{aligned}
\mathbf{E}\left(X_{k}^{2}\right) & =\mathbf{E}\left(X_{k}\right)+\mathbf{E}\left(X_{k}\right) \sum_{t=0}^{k-1} Y_{k, t} p^{k-t} \\
& \leq \mathbf{E}\left(X_{k}\right)+\mathbf{E}\left(X_{k}\right)^{2}+\sum_{t=1}^{k-1}\binom{k}{t} n^{k-t} p^{k-t} \\
& \leq \mathbf{E}\left(X_{k}\right)+\mathbf{E}\left(X_{k}\right)^{2}+2^{k} \mathbf{E}\left(X_{k}\right) \sum_{t=1}^{k-1} \omega^{k-t} \\
& =(1+o(1)) \mathbf{E}\left(X_{k}\right)^{2}
\end{aligned}
$$

The result follows from the Chebyshev inequality. If ω grows faster than claimed then we use monotonicity.

