Homework 2: Solutions

1.4.8 The probability that $G_{n, p}=K_{n}$ is $p^{N} \rightarrow 0$ and so its diameter will be at least two w.h.p. On the other hand, let $\mathcal{A}_{x, y}$ be the event that there does not exist $z \neq x, y$ such that $\{x, z\},\{y, z\} \in E\left(G_{n, p}\right)$. Then,

$$
\mathbf{P}\left(\exists x, y: \mathcal{A}_{x, y}\right) \leq n^{2}(1-p)^{n-2} \leq n^{2} e^{-(n-2) p} \rightarrow 0
$$

1.4.9 Let $Z=|X|=Z_{1}+Z_{2}+\cdots Z_{n}$ where $Z_{j}=1_{j \in X}$. Then for $j \in[n]$,

$$
\mathbf{E}\left(Z_{j}\right)=\mathbf{P}\left(Z_{j}=1\right)=\left(1-\frac{1}{n}\right)^{n} \sim e^{-1}
$$

So,

$$
\mathbf{E}(Z) \sim n e^{-1}
$$

We now estimate $\mathbf{E}\left(Z_{i} Z_{j}\right)=\mathbf{P}(\{i, j\} \subseteq X)$ for $i \neq j$.

$$
\mathbf{P}(\{i, j\} \subseteq X)=\left(1-\frac{2}{n}\right)^{n}
$$

and so

$$
\mathbf{E}\left(Z^{2}\right)=n\left(1-\frac{1}{n}\right)^{n}+n(n-1)\left(1-\frac{2}{n}\right)^{n}
$$

Thus

$$
\operatorname{Var}(Z)=\mathbf{E}(Z)+\mathbf{E}(Z)^{2}\left(\frac{n(n-1)\left(1-\frac{2}{n}\right)^{n}}{n^{2}\left(1-\frac{1}{n}\right)^{2 n}}--1\right) \leq \mathbf{E}(Z)
$$

Applying the Chebyshev iequality, we have

$$
\mathbf{P}(|Z-\mathbf{E}(Z)| \geq \epsilon \mathbf{E}(Z)) \leq \frac{1}{\epsilon^{2} \mathbf{E}(Z)}
$$

Putting $\epsilon=n^{-1 / 4}$ gives us what we want.
2.4.5 Let X denote the number of pairs (e, H) where H is a unicyclic graph with n vertices $[n]$ and n edges and e is an edge of $C(H)$, where $C(H)$ is the unique cycle of H. Then

- $X=n^{n-2}(N-n+1)$ where $N=\binom{n}{2}$, counting $(e, e+T)$ where T is a spanning tree.
- $X=\sum_{k=1}^{n} k C_{k}$ where C_{k} is the number of unicyclic H whose cycle has k edges.

So,

$$
\frac{n^{n-2}(N-n+1)}{C(n, n)}=\frac{\sum_{k=1}^{n} k C_{k}}{C(n, n)}=\mathbf{E}(|C(H)|)
$$

