
Traveling Plan Generator
Dong Xia, Boning Xing, Jiayi Bao, Wenyuan Shen

Abstract

In our study, we developed an advanced methodology to rank and optimize travel
itineraries for various Chinese cities, utilizing a comprehensive dataset and advanced
computational techniques from operations research. Our work is divided into two main
parts: firstly, city ranking, and secondly, itinerary optimization through Integer
Programming and the Nearest Neighbor Algorithm.

Introduction

Problem Statement

The primary problem we are addressing has two parts: firstly, identifying the optimal set
of cities to visit, and secondly, determining the most efficient route to travel through
these cities. This involves considering various factors such as personal preferences,
budget constraints, travel duration, and the unique attributes of each city. The
complexity of this problem lies in balancing these diverse elements to create an itinerary
that maximizes overall travel satisfaction.

Objective

The objective of our project is to develop a comprehensive travel itinerary that optimizes
the selection of cities and the duration of stay in each city. We aim to employ operations
research techniques to assess and rank potential travel destinations based on various
criteria tailored to our preferences. Additionally, we intend to utilize optimization
algorithms to determine the most efficient travel route, ensuring that we make the most
out of our time and budget. The end goal is to create a balanced, fulfilling travel
experience that caters to our interests and maximizes the value of our graduation trip.

Data and Tools

The dataset described in "city.csv" offers a comprehensive statistical analysis of various
cities in China, covering five key areas: basic city information, access and outbound

(AR&OD) data, demographic characteristics, social-spatial structure, and
socioeconomic status. Each city is uniquely identified by a 'City_cd', representing its
administrative division code. The 'Region' field provides the city's name. The dataset
includes detailed AR information such as average yearly access frequency (AR_city),
differentiated by off-season (AR_city_off_season) and high-season
(AR_city_high_season), as well as per capita figures for these metrics. OD data covers
average yearly outbound distances for each city (OD_city), again split into off-season
and high-season figures, with corresponding per capita values. Demographic
information includes the percentage of local residents with a hukou (household
registration) in each city, age distribution data (percentages of populations under 14,
between 15 and 64, and over 65), and resident and migrant population densities.
Additionally, the dataset provides the number of attractions in each city, offering insights
into its tourism and cultural significance. This rich dataset facilitates a multidimensional
analysis of urban dynamics, demographics, and socioeconomic factors across Chinese
cities. Below is an example of what our dataset looks like:

In our project, we aim to evaluate and rank various Chinese cities based on several key
factors, leveraging the data from the 'city.csv' dataset, so we wrote the
‘city_score_generator’. Our approach involves a blend of data preprocessing, feature
selection, and weighted scoring to create a comprehensive city ranking system.

Firstly, we define a set of criteria for our city ranking: Attractions and Culture, Cuisine,
Accessibility, and Infrastructure and Safety. Each criterion will be assigned a specific
personal preference weight, reflecting its importance in the heart of the person who is
using this pipeline to select traveling cities. For example, these weights can be 0.2 for
Attractions and Culture, 0.2 for Cuisine, 0.3 for Accessibility, and 0.3 for Infrastructure
and Safety, which sum up to 1.

For each criterion, we select relevant features from the dataset. 'Attraction number'
represents Attractions and Culture; 'Rural food expenditure' and 'Urban food
expenditure' indicate Cuisine; 'AR_capita' and 'OD_capita' define Accessibility; and
demographic features like '% local hukou rate', '% under age 14', and '% above age 65'
are used for Infrastructure and Safety.

We then employ the MinMaxScaler from Scikit-learn to normalize these features. This
transformation scales each feature to a given range, typically 0 to 1, enhancing
comparability across different metrics.

The next step involves calculating individual scores for each criterion. We multiply the
normalized feature values by 10, and for features with multiple indicators (like Cuisine),
we take the mean across these indicators to obtain a single score per city per criterion.

Finally, we compute the overall city score by multiplying the individual scores by their
respective weights for personal preference and summing these up. This score reflects a
city's performance across all considered criteria.

We filter the results for a pre-selected list of cities and export the final ranked list to
'city_score.csv'. This list includes notable cities like Beijing, Shanghai, and Xi'an, among
others. The final output provides a comprehensive ranking of these cities, based on the
combined influence of cultural attractions, culinary offerings, accessibility, and
infrastructural and safety parameters.

Methodology

Integer Programming

This project utilizes an Integer Programming (IP) approach to optimize the selection of
travel destinations and the duration of stay in the selected destinations. The IP model is
formulated to maximize the total score derived from visiting a set of cities within a
specified number of travel days and a predefined budget. The city scores are derived
from the city_score_generator that have taken customer’s personal preferences into
account as weights, and the budget for each city is derived from the
city_expense_generator.

Variables:

- : Number of days to stay in city𝑥
𝑖

𝑖

- : Score assigned to city , reflecting its attractiveness or priority𝑠
𝑖

𝑖

- : Expected expense in city𝑏
𝑖

𝑖

- : Binary variable indicating if city is selected (1 if selected, 0 otherwise)𝑦
𝑖

𝑖

Objective Function:

The model seeks to maximize the traveler’s satisfaction by choosing a set of cities that
optimize the total score, adjusted by a quadratic penalty on the number of days to
capture the phenomenon of diminishing marginal utility in reality thus to discourage
disproportionately long stays.

𝑚𝑎𝑥
𝑖

∑(𝑥
𝑖

* 𝑠
𝑖

* 𝑦
𝑖
) − 0. 05 * 𝑠

𝑖
* 𝑥

𝑖
2

Constraints:

- Time Constraint: The sum of days spent in all cities is less than or equal to the
total available travel days.

- Minimum Stay Constraint: If a city is selected, the traveler must stay for at least
two days to ensure an adequate experience.

- Budget Constraint: The sum of the product of days spent in each city and the
corresponding expense does not exceed the traveler's budget.

- For the budget constraint, city_expense_generator first normalizes the city
scores to a scale that matches our budget range. This normalization is done
using a z-score calculation and then scaling these scores to fit within our
maximum budget of ¥20,000. The budget constraint ensures that the total cost of
our trip, calculated as the sum of the cost per day times the number of days in
each city, does not exceed this maximum budget.

Decay function

The quadratic decay function is applied to the objective function,𝑑(𝑥) = 1 − β * 𝑥2
where denotes the duration of stay and is the decay rate. A quadratic decay function𝑥 β
is useful in scenarios where the rate of decay accelerates over time. This type of
function models situations where the initial impact or value diminishes gradually at first
and then more rapidly as time progresses. In this scenario, when a traveler first arrives
in a city, their enjoyment level is high due to the novelty and excitement of new
experiences. However, as travelers spend more time in a city, the initial high level of
satisfaction decreases, and the rate at which enjoyment decreases starts to accelerate
since what was novel and exciting becomes more familiar and less stimulating.

Therefore, incorporating a quadratic decay function into the travel itinerary optimization
model effectively quantifies the intuitive understanding of human psychology and
encapsulates the realistic scenario where extended stays in the same city offer
diminishing returns after an optimal period. By applying this model, the objective
function strategically addresses the diminishing returns of extended stays, thereby
optimizing the allocation of time across multiple destinations. It ensures that travelers

spend an ideal amount of time in each city before the marginal enjoyment diminishes
significantly, which makes each city visit remain engaging and fulfilling. This
mathematical approach provides a pragmatic solution for solving the common issue of
overextended stays and maximizing overall travel experience.

Nearest Neighbor Algorithm

1. Introduction

The Nearest Neighbor Algorithm is a heuristic approach used to address the
Traveling Salesman Problem (TSP), which involves identifying the shortest
possible route that visits a set of cities and returns to the origin. This algorithm is
noteworthy for its simplicity and efficiency in generating routes, especially when
dealing with a large number of cities.

2. Working Principle

The algorithm starts with an initial city and sequentially selects the nearest
unvisited city as the next step. This process continues until all cities are visited.
The final step involves returning to the starting city, completing the circuit. While
this method does not always yield the shortest path, it is recognized for its
relative accuracy and computational efficiency.

Results

We use 15 most popular cities (Beijing, Shanghai, Xi'an, Guilin, Chengdu, Hangzhou,
Suzhou, Shenzhen, Guangzhou, Lhasa, Lijiang, Dali, Chongqing, Nanjing, Harbin) in
China as a pre-selected pool from which our algorithm will select travel destinations. In
this example, the traveler is planning for a 20-day trip with a total budget of 20,000
Chinese yuan.

The following examples illustrate how our algorithm generates different routes for
travelers with different preferences.

In the first scenario, the traveler prefers safety and cuisine over accessibility and
attractions. The personal preference weight vector is [Attractions and Culture: 0.1,

Cuisine: 0.3, Accessibility: 0.1, and Infrastructure and Safety: 0.5]. Based on our
algorithm, the optimal travel plan is to spend 2 days in Beijing, 2 days in Shanghai, 2
days in Guilin, 3 days in Hangzhou, 2 days in Suzhou, 2 days in Guangzhou, 2 days in
Dali, and 2 days in Chongqing. The shortest routes that visit each city exactly once and
return to the origin city are shown below. Graph (1) on the left uses Beijing as the origin
city, while graph (2) on the right chooses Shanghai as the starting point. It is clear from
the graphs that the choice of starting point can greatly influence the output of the
nearest neighbor algorithm. One future improvement we can do is to run the algorithm
over all possible origin cities and return the route with the shortest total distance.

In the second scenario, the traveler prefers good food over all other factors. The
personal preference weight vector then becomes [Attractions and Culture: 0.1, Cuisine:
0.5, Accessibility: 0.2, and Infrastructure and Safety: 0.2]. The optimal travel plan is
altered to spend 2 days in Beijing, 2 days in Shanghai, 3 days in Guilin, 3 days in
Hangzhou, 2 days in Suzhou, 2 days in Guangzhou, 2 days in Lhasa, and 2 days in
Nanjing. Graph (3) below shows the shortest route that starts from Beijing, visits all the
cities in the plan, and returns to Beijing.

Future research:

As we advance our research and development on route optimization algorithms, we

acknowledge the importance of continuous improvement. Reflecting on the current

implementation, we propose several enhancements to both the selection of cities and

the construction of the traveling route.

1. Enhancements in City Selection
(1) Comprehensive Score Generator

Current methodologies for selecting cities rely on simplistic scoring systems that

may not fully capture the complexities of city attributes. We recommend the

development of a more nuanced score generator. For example, we don’t need to

use food expenditure in the city to estimate the food/restaurant quality. Instead,

using the number of restaurants with high ratings would be a better estimation.

This enhanced system would incorporate a broader range of data points,

including economic indicators, cultural significance, and traveler reviews, to

produce a multifaceted score reflective of a city's overall appeal for inclusion in

travel routes.

(2) Advanced Decay Functions

The inclusion of decay functions in the city selection process can simulate

diminishing returns, where the value of adding additional cities to the route

decreases over time or distance. By incorporating more sophisticated decay

functions, we can refine our model to better represent the real-world impact of

extending travel itineraries, thus optimizing for time and resource expenditure.

During implementation of the decay function, we also found Gurobi doesn’t support
exponential function. If we have more time, we will try solving the integer programming
without using Gurobi, so we can try other decay functions to improve the algorithm.

(3) Balancing Collective Goals and Individual Preferences

The preference vector inputted in this algorithm represents one traveler or one

group’s preference. However, preferences of travelers within a group are usually

different, so the algorithm should aim to harmonize the collective and individual

preferences.. We can add more constraints to the model so that while the

collective goal is optimized, individuals preferences are also well considered.

2. Improvements in Traveling Route Construction

(1) Advanced Algorithms for TSP

The Nearest Neighbor Algorithm, while effective for initial route planning, is
fundamentally greedy and can be shortsighted. For future iterations, we propose
exploring more advanced algorithms that can provide better solutions for the
TSP. Techniques such as Genetic Algorithms, Simulated Annealing, or Ant
Colony Optimization have shown promise in finding near-optimal solutions and
could significantly enhance our route optimization.

(2) Incorporation of Travel Time Metrics

Distance has been a traditional metric for route planning; however, travel time is

often a more relevant measure for travelers. We advocate for the integration of

travel time calculations in route planning, accounting for varying speeds and

transportation modes. This shift in metrics will likely result in more practical and

time-efficient travel routes.

(3) Data Collection from Multiple Transportation Modes

To further refine the travel time estimates and provide more comprehensive

routing options, we plan to integrate diverse transportation data, including airline

schedules, railway timetables, and public transit systems. By collecting and

utilizing data from these various modes, the algorithm can offer routes that are

not only optimized for distance or time but also provide a range of options

catering to different preferences and constraints.

In conclusion, the proposed enhancements aim to augment the algorithm's robustness

and adaptability. By embracing a more holistic approach to city selection and route

construction, we can deliver sophisticated solutions that align more closely with the

multifaceted nature of travel planning and individual traveler needs.

Code

city_score_generator

import pandas as pd

from sklearn.preprocessing import MinMaxScaler

df = pd.read_csv('city.csv')

Self Defined Weight

weights = {

'Attractions and Culture': 0.2,

'Cuisine': 0.2,

'Accessibility': 0.3,

'Infrastructure and Safety': 0.3

}

attractions_culture_feature = 'Attraction number'

cuisine_features = ['Rural food expenditure', 'Urban food expenditure']

accessibility_features = ['AR_capita', 'OD_capita']

infrastructure_safety_features = [' % local hukou rate', '% under age 14', '% above

age 65']

scaler = MinMaxScaler()

df[attractions_culture_feature] =

scaler.fit_transform(df[attractions_culture_feature].values.reshape(-1, 1))

df[cuisine_features] = scaler.fit_transform(df[cuisine_features])

print(df[cuisine_features])

df[accessibility_features] = scaler.fit_transform(df[accessibility_features])

df[infrastructure_safety_features] =

scaler.fit_transform(df[infrastructure_safety_features])

df['Attractions and Culture'] = 10* df[attractions_culture_feature]

df['Cuisine'] = 10*df[cuisine_features].mean(axis=1)

df['Accessibility'] = 10* df[accessibility_features].mean(axis=1)

df['Infrastructure and Safety'] = 10* df[infrastructure_safety_features].mean(axis=1)

df['score'] = df[list(weights.keys())].mul(list(weights.values())).sum(axis=1)

cities = ['Beijing', 'Shanghai', "Xi'an City", 'Guilin City', 'Chengdu City',

'Hangzhou City', 'Suzhou City', 'Shenzhen City', 'Guangzhou City', 'Lhasa City',

'Lijiang City', 'Dali Bai A.P', 'Chongqing', 'Nanjing City', 'Harbin City']

result = df[['Region','score', 'Attractions and Culture', 'Cuisine', 'Accessibility',

'Infrastructure and Safety']]

filtered_result = result[result['Region'].isin(cities)]

filtered_result.to_csv('city_score.csv', index=False)

IP_select_city & city_expense_generator

from gurobipy import Model, GRB

import pandas as pd

import math

df = pd.read_csv('city_score.csv')

model = Model("CityTravel")

model.params.NonConvex = 2

cities = ['Beijing', 'Shanghai', "Xi'an City", 'Guilin City', 'Chengdu City',

'Hangzhou City', 'Suzhou City', 'Shenzhen City', 'Guangzhou City', 'Lhasa City',

'Lijiang City', 'Dali Bai A.P', 'Chongqing', 'Nanjing City', 'Harbin City']

x = {city: model.addVar(vtype=GRB.INTEGER, name=f"x_{city}") for city in cities}

y = {city: model.addVar(vtype=GRB.BINARY, name=f"y_{city}") for city in cities}

cities_scores_dict = dict(zip(df['Region'], df['score']))

Objective with decay

objective = sum(cities_scores_dict[city] * x[city] * y[city] for city in cities)

for city in cities:

objective -= 0.05 * cities_scores_dict[city] * x[city]**2

model.setObjective(objective, GRB.MAXIMIZE)

Time Constraint

max_total_days = 20

model.addConstr(sum(x[city] for city in cities) <= max_total_days,

name="total_days_constraint")

for city in cities:

model.addConstr(x[city] >= 2 * y[city], name=f"x_{city}_not_1_constraint")

Budget constraint

city_score_list = []

for index, row in df.iterrows():

city_score_list.append((row['Region'], row['score']))

generate mean

mean = df['score'].mean()

generate standard deviation

std = df['score'].std()

generate z score for each city

city_z_score_list = []

for city, score in city_score_list:

city_z_score_list.append((city, (score - mean) / std))

print(city_z_score_list)

get the max and min z score

max_z_score = max(city_z_score_list, key=lambda x: x[1])[1]

min_z_score = min(city_z_score_list, key=lambda x: x[1])[1]

print(max_z_score, min_z_score)

normalize the z score of each city to the range of -1 to 1, make sure all z scores

are in this range

city_z_score_scaled_list = []

for city, z_score in city_z_score_list:

city_z_score_scaled_list.append((city,1 + 0.4 * (z_score - min_z_score) /

(max_z_score - min_z_score) - 0.2))

max_budget = 20000

base = max_budget/max_total_days

city_z_score_scaled_list = [(city, scale * base) for city, scale in

city_z_score_scaled_list]

cities_costs_dict = dict(city_z_score_scaled_list)

model.addConstr(sum(cities_costs_dict[city] * x[city] for city in cities) <=

max_budget, name="budget_constraint")

model.optimize()

if model.status == GRB.OPTIMAL:

print("Optimal solution found!")

for city in cities:

print(f"{city}: {x[city].x}")

print(f"Total score: {model.objVal}")

print(f"Total cost: {sum(cities_costs_dict[city] * x[city].x for city in cities)}")

else:

print("No optimal solution found.")

TSP

