
Operations Research II Final Project

Ashley DiOdoardo, Emily Ma, Jenny Ou, and Reed Luttmer

December 2023

1 Introduction

1.1 Motivation

Carnegie Mellon has a rigorous Mathematics degree program regardless of the classes a stu-
dent takes over the course of their 4 years here. Students, every semester, have to make
decisions on what classes to take while considering interests, major requirements, and diffi-
culty of classes. All else aside, the difficulty of classes has a impact on the student experience
and ability to participate in activities outside of the classroom. The goal of this project is to
create a schedule that minimizes the Faculty Course Evaluation (FCE) hours, which are the
average number of hours spent by students on all course-related activities for a given class.
Specifically, we aim to minimize the maximum number of FCE hours in any semester.

FCE hours provide a useful way to measure how difficult and time consuming a class actually
is based on actual student feedback. Thus, we thought it would be a sufficient measure to
minimize. Our 8-semester schedule can be used as a guide for future students to plan out a
manageable schedule for their time at CMU.

1.2 Previous Projects

One of our goals is to improve and expand upon previous projects of a similar topic. One
project, from Fall ’19, has provided a solution, except it has some assumptions that we have
made stronger. For instance, in their paper, they note that they assume any class can be
taken any semester - which is not the case and provides solutions that are not reasonable.
In addition, their solution is solely math classes. Our project, instead, focuses on the core
curriculum of the Mathematical Science (Statistics and Operations Research concentration)

1

and provides a more thorough planning guide which includes statistics, business, and com-
puter science courses as options for the depth electives. Furthermore, their provided solution
includes taking 700 level courses as a first-year student. This is highly unlikely to do, and
our solution will provide a more practical solution for the general student. Therefore, we
have excluded graduate level courses and included solely undergraduate level classes.

Another project, from Fall ’18, provides a solution, but it only contains classes for 4 semesters.
Also, this schedule has prerequisite conflicts such as taking 21-270 and 21-370 in the same
semester. This is also an issue as 21-370 is only offered in the Fall. Our project will focus on
creating a schedule for the full 8 semesters, as well as ensuring that all prerequisite require-
ments are met to provide a more accurate solution to the problem. The solution provided in
the past project includes taking up to 6 math classes a semester, which is not manageable for
the average student. We will focus on balancing the quantity of math courses by including
other major requirements and Gen-Ed courses. Overall, improving the faults in these two
projects were a focus of our project.

2 Formulating ILP

2.1 Decision Variables

We first want to create decision variables. We are trying to figure out the optimal schedule,
so the decision variables will center around which courses to take and when. Specifically, we
have the binary variable xi,j to represent whether course i is taken during semester j or not.
We will let N denote the number of courses and S denote the number of semesters, and thus
xi,j is defined for i ∈ [N] and j ∈ [S].

2.2 Objective Function

Our goal is for the student to not have any semesters that are too busy. To that end, our
objective is to minimize the maximum FCE in any given semester. Thus, we let fi represent
the FCE of course i for i ∈ [N]. Then the objective function can be written as

min max
j∈S

{
N∑
i=1

fi · xi,j

}
.

We run into a problem however. Our goal is to have an integer linear program, but the max
function isn’t directly linear, and would therefore be hard to encode into the software we will
use. Hence, we create one more decision variable a which will represent the max FCE of any

2

semester. Then our objective is to minimize a, but we must also add constraints ensuring
that a is at least the total FCE of each semester:

a ≥
N∑
i=1

fi · xi,j ∀j ∈ [S].

Then in a feasible solution, a will not necessarily represent the maximum FCE of a semester
(it could be higher than the maximum), but in any optimal solution, it will.

2.3 Constraints

We have quite a few constraints to add. First of all, any particular class can not be taken
more than once. So

S∑
j=1

xi,j ≤ 1 ∀i ∈ [N].

Moreover, there is a maximum number of units that a student is allowed to take per semester
before their schedule is considered an overload. We will call this variable Uo (for the average
Mellon College of Science student, Uo = 54). Then to ensure that no semester is more than
Uo units, we let ui represent the number of units that course i is worth. We obtain the
constraint:

N∑
i=1

ui · xi,j ≤ Uo ∀j ∈ [S].

Likewise, in order to graduate, there is a minimum number of units a student must take
during their time at college, which we will call Ug (for CMU students, Ug = 360 units). To
ensure that at least this many units are taken, we have the constraint:

S∑
j=1

N∑
i=1

ui · xi,j ≥ Ug

We must then deal with prerequisites. Many courses have multiple courses that could fulfill
the prerequisites. For example, the probability course 21-325 has a prerequisite of 21-268
or 21-259 or 21-269 or 21-256 (which are all 3D calculus courses). We dealt with this by
creating groups of classes, labeled G1, G2, . . . , Gγ, where γ is the total number of groups.
Then we have the set P = {(i, g) ∈ [N]× [γ] : course i has group Gg as a prerequisite}. So
in our example, we would put the four calculus courses above in one group (say G1), and
then there would be the ordered pair (21325, 1) ∈ P representing the fact that a course from
group G1 must be taken as a prereq for the course 21-325. Importantly, only one course

3

from the group needs to be taken, not multiple or all of them, and this will always be the
case. We therefore end up with the constraint:

j−1∑
k=1

∑
h∈Gg

xh,k ≥ xi,j ∀j ∈ [S], ∀(i, g) ∈ P

which dictates that if course i is taken in semester j, and if group Gg is a prerequisite for
course i, then at least one course h in the group Gg must be taken in a semester before j (so
notably a semester k between 1 and j − 1, inclusive).

We also have to encode the classes required to graduate. We define requirementsR1, R2, . . . , Rρ,
which are groups of required classes. Each set Rr contains all course numbers i ∈ [N] that
count towards requirement r, and in order for the requirement to be satisfied, at least one
course i ∈ Rr must be taken (importantly, not all courses have to be taken, one is enough).
For example, an Operations and Statistics concentration student must take one probability
course, but they can chose between 21-325, 15-259, and 36-218 to fulfill this requirement.
So we would put all three of these courses in one requirement Rr. Then to make sure all
requirements are met, we have the constraints:

S∑
j=1

∑
i∈Rr

xi,j ≥ 1 ∀r ∈ [ρ].

There is however one requirement that can’t be formulated as above: a student must take
at least 45 units of depth electives, from a long list of depth electives. For this, we define
the set D to be all course numbers i ∈ [N] that count as depth electives, and then we have
the constraint:

S∑
j=1

∑
i∈D

xi,j · ui ≥ 45.

The final set of constraints we must consider concern the times during which courses are
taken. We need to make sure that students aren’t enrolled in two courses that have lectures
at the same time, and we also must ensure that a student doesn’t plan to take a Spring-only
class in the Fall or a Fall-only class in the Spring. To do this, we divide the week into T
time slots. For example, at CMU, classes start every half hour, so we divided the week into
30-minute time slots, ranging from 8-8:30am on Monday to 8:30-9pm on Friday. We also
assume that any class offered in the Spring will be at the same time every Spring, and that
any class offered in the Fall will be at the same time every Fall. Then we have the binary
data variables yi,1,t and yi,2,t which are 1 if course i is offered during time slot t in the Fall
(season 1), and Spring (season 2), respectively, and 0 otherwise. To make sure only one class

4

is taken per time slot per semester, we add the constraints:

N∑
i=1

xi,j · yi,2−j%2,t ≤ 1 ∀t ∈ [T], ∀j ∈ [S]

which sum over all courses that could be offered in the given time slot and semester and make
sure at most one of them are taken. In this context, we are using % as the mod operator to
denote the remainder when j is divided by 2, so that 2− j%2 evaluates to 1 when j is odd
(since the odd semesters are in the fall) and 2 when j is even.

Finally, we ensure that no Spring-only class is taken in the fall, and vice-versa. If a course i
is offered in the Fall, it will meet during at least one fall time slot, and then

∑T
t=1 yi,1,t ≥ 1,

whereas if course i isn’t offered in the Fall, then we have
∑T

t=1 yi,1,t = 0. If course i isn’t
offered in the Fall, we want xi,1, xi,3, . . . , xi,2⌈S/2⌉−1 to all be 0, which we can encode by forcing
their sum to be 0. And we know their sum will be at most 1 (we encoded this above because
each course can be taken at most 1), so enforcing that the sum is less than or equal to 1
wouldn’t have any consequences. Thus we add the constraints

⌈S/2⌉∑
k=1

xi,2k−1 ≤
T∑
t=1

yi,1,t ∀i ∈ [N]

to make sure that course i won’t be taken in the Fall if it isn’t offered in the Fall. Likewise,
we have the constraints

⌊S/2⌋∑
k=1

xi,2k ≤
T∑
t=1

yi,2,t ∀i ∈ [N]

for courses that aren’t offered in the Spring.

2.4 Overall Variable Definitions

After all this work, we end up with the following variables. Of the variables below, only xi,j

and a are the decision variables, all other variables are data variables, meaning that they are
being input into the program, their values aren’t being changed to find an optimal solution.

N = the total number of courses

S = number of semesters

xi,j =

{
1, course i ∈ [N] is taken in semester j ∈ [S]

0, otherwise

fi = the FCE of course i

a = max FCE across semesters (enforced via constraints)

5

ui = how many units course i is

Uo = max number of units in a semester to avoid overloading

Ug = number of units needed to graduate

Gg = {i ∈ [N] : course i is part of the g’th group of classes}
γ = The number of groups Gg

P = {(i, g) ∈ [N]× [γ] : course i has a course from group Gg as a prereq}
Rr = {i ∈ [N] : course i is a course that can be taken to fulfill requirement r}
ρ = The number of requirements Rr

T = number of time slots in a week

yi,1,t =

{
1, if course i ∈ [N] is offered during time slot t ∈ [T] in the Fall

0, otherwise

yi,2,t =

{
1, if course i ∈ [N] is offered during time slot t ∈ [T] in the Spring

0, otherwise

2.5 Overal ILP

Thus we obtain the ILP:

minimize a subject to

a ≥
N∑
i=1

fi · xi,j ∀j ∈ [S] (ensure a is the max FCE in any semester)

S∑
j=1

xi,j ≤ 1 ∀i ∈ [N] (no class is taken multiple times)

N∑
i=1

ui · xi,j ≤ Uo ∀j ∈ [S] (no semester is a unit overload)

S∑
j=1

N∑
i=1

ui · xi,j ≥ Ug (the required number of units to graduate are taken)

j−1∑
k=1

∑
h∈Gg

xh,k ≥ xi,j ∀j ∈ [S], ∀(i, g) ∈ P (prerequisites are satisfied)

S∑
j=1

∑
i∈Rr

xi,j ≥ 1 ∀r ∈ [ρ] (required courses are taken)

6

S∑
j=1

∑
i∈D

xi,j · ui ≥ 45 (45 units of depth electives are taken)

N∑
i=1

xi,j · yi,2−j%2,t ≤ 1 ∀t ∈ [T], ∀j ∈ [S] (no classes are taken at the same time)

⌈S/2⌉∑
k=1

xi,2k−1 ≤
T∑
t=1

yi,1,t ∀i ∈ [N] (no Spring-only course scheduled for Fall)

⌊S/2⌋∑
k=1

xi,2k ≤
T∑
t=1

yi,2,t ∀i ∈ [N] (no Fall-only course scheduled for Spring)

xi,j ∈ {0, 1} ∀i ∈ [N], j ∈ [S]

3 Implementing ILP with CMU-Specific Data

3.1 Data Sources

Our data for the project consisted of both FCE Data and Course Scheduling Data. The FCE
data was obtained from the FCE database for the following semesters: Fall ’21, Spring ’22,
Fall ’22, Spring ’23. The category “Hrs Per Week” was used as a measure for how hard and
time consuming a class is. We averaged the FCE for each course across the four semesters
in which data was collected from.

Our Scheduling Data was obtained from the CMU Schedule of Classes. We obtained the days
and times that courses are offered for the Spring and Fall semesters (Fall ’23, Spring ’24 as
that is what is currently viewable on the website). Furthermore, for each of our courses, we
looked it up in the Schedule of Classes and obtained any prerequisite requirements. Here, we
also obtained the actual units for each course. We formatted our data using Google Sheets,
and transforming it into the necessary formats (such as for date/time of course offering)
following the outline mentioned in our constraints (Section 2.3) for the ILP.

We selected classes that are required in the core curriculum as well as math, computer
science, business, and statistics courses that can count towards the required depth electives
for the major. We also included general education requirement courses that are outlined in
the next section. There were a total of 96 courses that data was retrieved for.

7

3.2 Assumptions

In order for our ILP to output an accurate schedule in a reasonable amount of time, we
had to make some initial assumptions. First, we assumed that the Schedule of Classes
for Fall ’23 and Spring ’24 will be representative of the course offerings for all four years.
This assumption is reasonable, as courses tend to be offered at the same time every year.
Furthermore, we had to encode generic general education (Gen-Ed) requirement courses in
order to meet the minimum number of units to graduate. To do so, we encoded 9 unit
Gen-Ed requirements with various FCE units (between 5 and 9). We included nine of these
courses at various times in both semesters. From our experience, typical Gen-Ed courses
that students take vary between 5 and 9 FCE units and are offered various times and days.
Thus, we believe these assumptions to accurately represent course offerings at CMU.

We assumed that the students come to CMU with AP credit for both Calculus I and Calculus
II, as this is the case for most mathematics majors. There is a general outline for when courses
should be taken, including first-year courses and the Engage requirements. We hard coded
the classes in the the table below in order to follow the suggested timeline to complete the
Engage requirements, as well as to complete first year requirements and necessary coursework
(such as 21-128 and 38-101). It would be atypical for a student to take these courses outside
of the suggested timeline, thus we fixed them for all outputs as follows:

Course # Course Name Semester
21-128 Mathematical Concepts & Proofs 1
Various First-Year Writing Requirement 1 or 2
38-101 Eureka Discovery & Impact 1
38-230 Engage in Wellness Looking Inward 4
38-330 Engage in Wellness Looking Outward 5
38-430 Engage in Wellness Looking Forward 7
38-110 Engage in Service 7
38-220 Engage in Arts 7

Lastly, there are special topics statistics courses (36-46X) that vary in topics and offering
times across semesters. For clarity and accuracy, we combined all of the special topics courses
into one general special topics course, by averaging the FCEs for all of the offerings in the
data. We selected at time in the spring and fall semesters that is accurate based on past
data. Therefore, potential solutions will contain a general offering in which the student can
choose from the semester-specific topic offerings.

8

4 Solving with Gurobi

For solving the ILP, we chose to use Gurobi Optimization Software. Though the software
requires a purchased license to use, we had previously obtained an academic license from
our 21-292 Operations Research I class. Thus, due to our familiarity with the software and
availability, we chose to use it for the project. We coded our ILP using Python (code can
be seen at the end of the paper) and the Gurobi software. We used the Python library
Pandas in order get the data into Python and convert it into the necessary data structures
for the model. When run locally on a computer from 2020, it took approximately 2 hours
to produce a solution.

5 Solving with Heuristic Algorithm

In addition to the Gurobi optimization, we also created a heuristic algorithm in Python.
Given course schedules with corresponding units and FCEs, course prerequisites, and grad-
uation requirements, the algorithm outputs a feasible solution. The algorithm followed the
same assumptions as the Gurobi model’s, with one additional: each of the first six semesters
has five classes total. Three of the classes must be technical and two are nontechnical.

After reading in the data files for each course, we created a dictionary with the class as the
key and a list of the prerequisites needed in order to take said class as the value. Similarly, we
created a second dictionary with each course, k, as a key, where the value was a list of classes
whose prerequisites course k can be used to fulfill. Because there were a limited number of
technical classes under consideration, a list of them was manually included. The next step
included categorizing the classes which satisfied various graduation requirements, such as
depth electives or taking a calculus course. Lastly, several boolean variables were initialized
to indicate whether a specific requirement had been satisfied yet along with variables for the
number of semesters to create a schedule for and the current number of depth and overall
units.

We decided to implement a greedy algorithm in order to determine which classes to add to
the current semester schedule. For each semester, among the classes that were not yet chosen,
our algorithm picked the class that was the prerequisite for the most number of classes using
our dictionary that we initialized above. For the class that was picked, the algorithm checked
if all necessary prerequisites for the course were satisfied as well if there a section offered at
the same time as a free slot in the schedule. The final condition was checking if the course
was technical/nontechnical and if so, had the maximum three technical/two nontechnical
condition had been satisfied yet. If these conditions were both satisfied, we added this course
to our schedule and updated the graduation requirement indicator variables. We continued

9

this “picking” process until five classes were added to the current semester schedule.

It is important to note that a couple of courses were hard-coded due to assumptions on the
model. First-year writing, Eureka, and 21-128: Concepts of Mathematics, were all added to
the first semester. Similarly, the MCS Engage Requirements was added manually to each
schedule, as was specified previously in Section 3.2.

The final output of this algorithm was a feasible course schedule.

6 Analyzing Results

In this section, we present a comparative analysis of our results with respect to various
benchmarks, including:

6.1 Results from Gurobi

We first present the results obtained using Gurobi. These results serve as a foundational
comparison for our findings.

The optimal schedule is as follows:

Overall, the schedule is correct. For each course, all of the prerequisites have been satisfied
in prior semesters and all of the graduation requirements have been satisfied. Moreover, the
average number of FCEs for each semester, is within a similar range of 39 hours. Because the

10

FCEs for each semester is within a similar range, this solution helps achieve the objective of
minimizing the maximum FCE among the 8 semesters. We can see that the optimal schedule
is extremely similar to our personal experiences so far with a healthy balance of technical
and non-technical courses added to each semester.

One interesting thing to note in the schedule is that 38-304: Reading and Writing Science,
is scheduled for Spring 1. Although this is a spring-only course, it is typically taken during
Spring 3 rather than Spring 1. However, this is not a significant issue because it is not
required, but recommended to be taken in Spring 3. Additionally, in Spring 4, 73-103:
Principles of Macroeconomics and 73-230: Intermediate Microeconomics are both scheduled.
This is not an issue either because 73-103 is not a prerequisite for 73-230, but students do
not typically take these courses in the same semester.

6.2 Comparison to Heuristic Algorithm’s Schedule

We want to compare the Gurobi optimal solution with the feasible one produced by the
heuristic algorithm.

The feasible schedule using the greedy approach is as follows:

Compared to the optimal schedule, the feasible schedule had higher FCEs for all eight
semesters, but were still relatively close to one another with the exception of Fall 3. The
higher FCEs are likely due to the additional constraint of three technical and two nontechni-
cal courses for each semester. Because of this assumption, more math classes were assigned
to the schedule. Math classes typically have higher FCEs than the average nontechnical

11

course. Interestingly, the same number of nontechnical classes were assigned to both of the
schedules, although not in the same semesters.

If planning a schedule that would allow you to have the most number of course options in
following semesters, the heuristic algorithm may work better by choosing courses based on
the number of courses it is a prerequisite for, especially in the earlier semesters. However, for
a college experience with the work relatively evenly distributed among the eight semesters,
the optimal solution is a possible way of achieving this goal while also ensuring that all of
the graduation requirements are satisfied in time.

6.3 Comparison to Past Papers’ Schedules

Next, we compare our derived schedules with those documented in prior papers. This com-
parative analysis highlights the deviations, improvements, or similarities between our sched-
ules and those previously published.

There was a similar study from Fall 2019 where the students also scheduled courses for a
mathematical sciences major. Their goal was to plan a schedule for a general math major
that minimized the maximum number of FCEs and minimized the hours of free time during
a student’s week. Essentially, they wanted to a schedule that had the least amount of free
time between classes as possible, so students can take classes back to back rather than having
many small blocks of unproductive free time. Their results are as follows:

12

Their schedule was mostly focused on scheduling only the math classes (21-xxx) over 8
semesters and when to take general electives. However, we chose to schedule all of the
courses an Operations Research and Statistics major is required to take, besides the general
electives. These included math, statistics, economics, accounting, computer science, and the
MCS core courses such as the Engage requirements, the physical science requirement, the
life science requirement, etc. The order of math classes were similar in the beginning, but
began to diverge at semester 3/4. The previous students also allowed graduate courses in
their schedule, which could be biased in terms of FCEs since grad students tend to spend less
time on grad courses than undergrads do. They were also able to achieve a lower maximum
FCE unit per semester of 33.89 compared to our maximum FCE unit of 38.8, although their
solution doesn’t meet the 360-unit graduation requirement.

There was another similar study conducted in Fall 2018. Their goal was to plan a schedule
for a general math major, allowing studemts to choose from a list of depth electives that
give the mathematics degree some “value” and take the easiest general education electives.
They used a valuation system by using the overall scores from FCEs to evaluate the depth
electives based on their value. The students used Integer Programming to determine which
depth electives to take and a greedy algorithm to choose the general education electives
that required the lowest FCEs. It should be noted that they assumed that all the courses
a student wishes to take for a particular semester does not have any scheduling conflicts.
Their results are as follows:

Their schedule was also mostly focused on scheduling only the math classes (21-xxx) over the
four years and didn’t include when to take general electives. They also planned the schedules
by years, indicating which classes to take in a certain year, rather than a certain semester.
As stated earlier, we were able to to schedule all of the courses an Operations Research and
Statistics major is required to take, besides the general electives. There were also a few
feasibility concerns with their outputted schedule, even when considering each “semester”
as denoted in their table as a year. For example, 36-225 is a fall-only class and requires
21-120 as a pre-req, but both are under the same academic year. 21-292 is recommended
to be taken in year 1, but requires 21-241 and 21-228 which are both scheduled in year 2.
Moreover, 21-270 is a spring-only class and is a pre-req for 21-370, but both are scheduled

13

in year 2. The order of math classes were similar in the beginning, but began to diverge at
semester 3/4. This may be because their solution model used the most recent catalog (2018)
and major requirements, but the course catalog may have been updated in the recent years.

While prior studies focused primarily on math courses, our schedule prioritized a wider
array of general education requirements requirements, omitting bias potentially introduced
by prioritizing specific courses (such as grad classes) or overlooking critical prerequisites
and class time constraints. This holistic approach ensured a well-rounded curriculum for an
Operations Research and Statistics major. By addressing these broader considerations, our
schedule was not only feasible but also expanded the scope, enabling a more comprehensive
optimized schedule for future students pursuing this major

6.4 Comparison to Published Schedule

Furthermore, we will compare our schedule against the CMU suggested schedule on the CMU
website. The suggested schedule is as follows:

While sharing a similar pathway in math course scheduling, our analysis revealed a contrast-
ing spread of FCEs over the suggested four-year period. Their recommended plan exhibited
a wider range of FCEs, fluctuating between 36.5 to 50.4 hours per week. In contrast, our
optimized schedule showcased a more consistent distribution, ranging from 38.5 to 38.8 hours
per week. In other words, our schedule was able to minimize the variance in FCEs, ensuring
a more balanced and manageable workload for students. Notably, our selection of depth

14

electives aimed at minimizing the maximum FCE, instead of leaving these choices to indi-
vidual student discretion (like the recommended schedule did). Additionally, our ordering
of non-math courses, including economics and accounting, differed.

7 Conclusion

Our study in optimizing college courses has yielded interesting observations. We saw that
our schedule managed to evenly distribute the workload across all semesters. This resulted
in a balanced academic course load, ensuring students wouldn’t face overwhelming spikes
in coursework at any point during their college experience. The optimized schedule was
also very similar to our own academic paths and mirrored the courses many of us have
taken or planned to take. This correlation emphasizes the relevance and applicability of
our findings to real-life academic journeys, further validating the importance of thoughtful
course planning and optimization for a smoother college experience.

However, our study isn’t without its limitations. The dynamic nature of class schedules and
the variability in FCEs due to individual professors pose challenges in creating a universally
applicable scheduling strategy.

Broadening this approach to encompass a variety of majors, minors, and concentrations
beyond Operations Research and Statistics could offer valuable insights into diverse academic
schedules. We could also consider optimizing the course planning strategy to minimize the
overall FCE over the four-year period. Prioritizing classes that might increase workload but
significantly contribute to future job prospects, such as those in machine learning, finance,
or programming, could be potentially beneficial for students as well. Another modification
could be to minimize the FCE during senior year, so students can have more time to apply
to jobs and/or graduate schools.

Our study holds practical significance in addressing the challenge of managing academic loads
in college effectively. Enhancing the scheduling process could help students in balancing their
academics with other non-academic interests such as extracurriculars, sports, etc.

8 Appendix: Code for Gurobi Solver

The following four pages show the Python code used to encode our ILP and run it through
the Gurobi optimization software:

15

12/8/23, 2:32 PM take3.py - Jupyter Text Editor

localhost:8888/edit/Downloads/take3.py# 1/1

from gurobipy import *

#------------------Defining the model---------------------------
Initialization. The name is arbitrary
model = Model('take3')

#-----------------Importing Data-----------------------------

import pandas as pd
import numpy as np

sched = pd.read_csv("PD_Schedule.csv")
units = pd.read_csv("PD_Units.csv")
PR = pd.read_csv("PD_PR.csv")
groups = pd.read_csv("PD_Groups.csv")
req = pd.read_csv("PD_Req.csv")

semCount = 8 # semCount is the number of semesters
courseCount = len(units) # courseCount is the number of courses

Schedule Matrix
fall = sched[sched.Sem == "F"]
fall = fall.drop("Sem", axis = 1)
fall = fall.drop("Num", axis = 1)

spr = sched[sched.Sem == "S"]
spr = spr.drop("Sem", axis = 1)
spr = spr.drop("Num", axis = 1)

timeVec = list(np.stack((fall, spr), axis = 1))
#timeVec_i,s,g is if course i is offered in timeslot g in season s (fall or
spring)

timeCount = len(timeVec[0][0])
print(timeCount)

FCE Vector
fceVec = list(units["FCE"]) # f_i is the FCE of course i

Units Vec
unitVec = list(units["Units"]) # unitVec_i is the units of course i

Group Vec
groups = groups.drop("Num", axis = 1)
groupVec = groups.values.tolist()
groupCount = len(groupVec[0])
"""
groupVec layout (group1 contains course 1 and n)
 Group 1 Group 2 ... Group n
Course 1 [1 0 0]
Course 2 [0 0 1]
...
Course n [1 0 0]

"""

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

12/8/23, 2:33 PM take3.py - Jupyter Text Editor

localhost:8888/edit/Downloads/take3.py# 1/1

PR Vec
PR = PR.drop("Num", axis = 1)
prereqVec = PR.values.tolist()
prereqCount = len(prereqVec[0])
says the group numbers that are prereqs for each course
"""
prereqVec layout (course 1 has prereq of group 2)
 Group 1 Group 2 ... Group 3
Course 1 [0 1 0]
Course 2 [0 0 0]
...
Course n [0 1 0]

"""

Requirements Vector
req = req.drop("Num", axis = 1)
depthVec = req["Depth Electives"]
depthReqUnits = 45
req = req.drop("Depth Electives", axis = 1)
reqVec = req.values.tolist()
reqCount = len(reqVec[0])
says the courses needed to fulfill requirments
"""
reqVec layout (to fulfill requirement 1 need course 1 or 2)
 Req 1 Req 2 ...
Course 1 [1 0
Course 2 [1 0
...
Course n [0 1

"""

#-----------------Creating decision variables---------------------
Define binary variables x_i,j
x=[([0]*semCount) for i in range(courseCount)];
for i in range(courseCount):
 for j in range(semCount):
 x[i][j] = model.addVar(vtype=GRB.BINARY,
 name="x_({},{})".format(i+1, j+1))

a = model.addVar(vtype=GRB.CONTINUOUS, name = "semester_max")

Pushing created variables to the model
model.update()

Each class is taken once
for i in range(courseCount):
 model.addConstr(sum(x[i][j] for j in range(semCount)) <= 1,
 name='Class {} taken once'.format(i+1))

55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109

12/8/23, 2:33 PM take3.py - Jupyter Text Editor

localhost:8888/edit/Downloads/take3.py# 1/1

Don't overload in any semester
for j in range(semCount):
 model.addConstr(sum(unitVec[i]*x[i][j] for i in range(courseCount)) <= 54,
 name="Don't overload in sem {}".format(j+1))

Loop through courses
Loop through groups
If group is prereq for that course
loop through group, add constr
for i in range(courseCount):
 for g in range(groupCount):
 if (prereqVec[i][g] == 1):
 # If course i requires group g as a prereq
 for j in range(semCount):
 # Then if course i is taken in semester j, at least one class (c)
 # from group g must be taken in a semester (k) lower than j
 model.addConstr(sum(sum(groupVec[c][g] * x[c][k] for k in
range(j))
 for c in range(courseCount)) >= x[i][j],
 name="Group {} prereq for {} in sem
{}".format(g+1,i+1,j+1))

Each graduation requirement must be satisfied
for r in range(reqCount):
 model.addConstr(sum(sum(reqVec[i][r] * x[i][j] for i in range(courseCount))
 for j in range(semCount)) >= 1,
 name="Satisfy requirement {}".format(r+1))

Need at least 45 units of depth electives
model.addConstr(sum(sum(depthVec[i]*x[i][j]*unitVec[i] for i in
range(courseCount))
 for j in range(semCount)) >= depthReqUnits,
 name = "Satisfy depth requirements")

One class per time slot per semester
for g in range(timeCount):
 for j in range(semCount):
 model.addConstr(sum(x[i][j]*timeVec[i][j%2][g]
 for i in range(courseCount)) <= 1,
 name="One class in slot {} for sem
{}".format(g+1,j+1))

Courses only taken in seasons they are offered in
for i in range(courseCount):
 model.addConstr(sum(x[i][2*j] for j in range(4)) <=
 sum(timeVec[i][0][g] for g in range(timeCount)),
 name="Course {} not taken in fall if spring only".format(i+1))
 model.addConstr(sum(x[i][2*j+1] for j in range(4)) <=
 sum(timeVec[i][1][g] for g in range(timeCount)),
 name="Course {} not taken in spring if fall only".format(i+1))

360 units in total needed to graduate
model addConstr(sum(sum(x[i][j] * unitVec[i] for j in range(semCount))

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

128
129

130
131
132
133
134
135
136
137
138

139
140
141
142
143
144
145
146
147

148
149
150
151
152
153
154
155
156
157
158
159
160

12/8/23, 2:33 PM take3.py - Jupyter Text Editor

localhost:8888/edit/Downloads/take3.py# 1/1

for g in range(timeCount):
 for j in range(semCount):
 model.addConstr(sum(x[i][j]*timeVec[i][j%2][g]
 for i in range(courseCount)) <= 1,
 name="One class in slot {} for sem
{}".format(g+1,j+1))

Courses only taken in seasons they are offered in
for i in range(courseCount):
 model.addConstr(sum(x[i][2*j] for j in range(4)) <=
 sum(timeVec[i][0][g] for g in range(timeCount)),
 name="Course {} not taken in fall if spring only".format(i+1))
 model.addConstr(sum(x[i][2*j+1] for j in range(4)) <=
 sum(timeVec[i][1][g] for g in range(timeCount)),
 name="Course {} not taken in spring if fall only".format(i+1))

360 units in total needed to graduate
model.addConstr(sum(sum(x[i][j] * unitVec[i] for j in range(semCount))
 for i in range(courseCount)) >= 360,
 name = "Total courses needed to graduate")

Hardcoding to make schedule more reliable
x[44][0] = 1; # concepts in sem 1
x[72][0] = 1 # eureka in sem 1
x[75][3] = 1; # engageInwards in sem 4
x[76][4] = 1; # engageOutwards in sem 5
x[77][6] = 1; # engageForwards in sem 7
x[73][6] = 1; # enagageService in sem 7
x[74][6] = 1; # engageArts in sem 7
x[71][2] = 1 # underGradColloq in sem 3
model.addConstr(sum(x[65][j]+x[67][j]+x[68][j]+x[69][j] for j in range(2,8)) <=0,
 name="No first year writing after first year")

To minimize the max FCE among semesters (but keep this linear), we create
variable a which is at least the FCE for each semester and minimize that
model.setObjective(a, GRB.MINIMIZE)
for j in range(semCount):
 model.addConstr(a >= sum(fceVec[i] * x[i][j] for i in range(courseCount)),
 name = "Max FCE >= sem {} FCE".format(j+1))

Printing the model in a separate file for easier look
model.write('take3.lp')

#-------------------- Solving the LP -------------------------------------

model.optimize()

#------------------ Outputting the solution ----------------------------

Prints the non-zero variables and its values in a table format
model.printAttr('X')

143
144
145
146
147

148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197

9 Appendix: Code for Heuristic Algorithm

1

2 ’’’

3 heuristic algorithm

4 input: course schedules

5 output: feasible schedule of classes

6

7 ** assumption: 3 technicals , 2 non -technicals

8

9 1. read in course schedule

10 2. make dictionary based on prerequisites (class --> classes prereq for)

11 3. make dictionary (class --> classes needed as a prereq)

12 4. 8 times: loop and choose 3 technicals randomly --> add to list of

visited classes

13 5. have a list for classes chosen in one semester

14

15 ’’’

16

17 import pandas as pd

18 import numpy as np

19

20 # read in data

21 sched = pd.read_csv("PD_Schedule.csv")

22 units = pd.read_csv("PD_Units.csv")

23 prereq = pd.read_csv("PD_PR.csv")

24 groups = pd.read_csv("PD_Groups.csv")

25 req = pd.read_csv("PD_Req.csv")

26

27 needed_prereq = {}

28 prereq_for = {}

29

30 # for each class , adds in prereqs needed

31 for i in prereq.index:

32 curr_class_i = prereq.loc[i][’Num’]

33 classes_needed_for_i = [col for col in prereq.columns if prereq.at[i,

col] == 1]

34

35 needed_prereq[curr_class_i] = classes_needed_for_i

36

37 prereq_classes = [(’OR_PR’, 21292) , (’DTF_PR ’, 21370) , (’MF_PR’, 21270) ,

(’DE_PR ’, 21260) , (’Py_PR ’, 15112) , (’D_PR’, 21228) , (’Con_PR ’, 21128) ,

(’Cal_PR ’, 21268) , (’M_Pr’, 21241) , (’Al_PR ’, 21373) , (’An_PR ’, 21355)

, (’P_PR’, 21325) , (’MI_PR’, 73102) , (’MA_PR’, 73103) , (’OM_PR’, 70371)

, (’S_PR’, 36226) , (’MR_PR’, 36401)]

38

39 # for each class , adds in what classes require it as a prereq

40 for c in prereq_classes:

20

41 curr_prereq = c[0]

42 filtered_classes = prereq[prereq[curr_prereq] == 1]

43

44 curr_num = c[1]

45 prereq_for[curr_num] = filtered_classes[’Num’]. tolist ()

46

47 technicals = [21228 , 21236 , 21238 , 21241 , 21254 , 21256 , 21259 , 21260 ,

21261, 21266 , 21268 , 21269 , 21270 , 21292 , 21301 , 21325 , 21329 , 21341 ,

21355, 21356 , 21366 , 21369 , 21373 , 21374 , 21378 , 21380 , 21420 , 21441 ,

21484, 15110 , 15112 , 15122 , 15150 , 15210 , 21128 , 21237 , 21240 , 21242 ,

21300, 21370 , 21371 , 21393 , 21469 , 21360]

48

49 # classes that satisfy each of these requirements

50 depth_req = (req[req[’Depth Electives ’] == 1])[’Num’]. tolist ()

51 d_req = (req[req[’D_R ’] == 1])[’Num’]. tolist ()

52 m_req = (req[req[’M_R’] == 1])[’Num’]. tolist ()

53 cal_req = (req[req[’Cal_R ’] == 1])[’Num’]. tolist ()

54 de_req = (req[req[’DE_R’] == 1])[’Num’]. tolist ()

55 p_req = (req[req[’P_R’] == 1])[’Num’]. tolist ()

56 e_req = (req[req[’E_R ’] == 1])[’Num’]. tolist ()

57 bs_req = (req[req[’BS_R’] == 1])[’Num’]. tolist ()

58 ps_req = (req[req[’PS_R’] == 1])[’Num’]. tolist ()

59

60 # checks if requirements have been satisfied

61 depth_req_sat = False

62 d_req_sat = False

63 m_req_sat = False

64 cal_req_sat = False

65 de_req_sat = False

66 p_req_sat = False

67 e_req_sat = False

68 bs_req_sat = False

69 ps_req_sat = False

70 total_req_sat = False

71

72 all_available_classes = sched[’Num’]. tolist ()

73 taken_classes = []

74

75 # initializes number of units and semesters , minimum number of depth and

total units

76 num_sem = 8

77 depth_req_units = 45

78 total_req_units = 360

79 max_num_tech = 3

80 max_num_non = 2

81

82 curr_depth_units = 0

83 curr_total_units = 0

21

84

85 final_schedule = {}

86

87 for s in range(1, num_sem + 1):

88

89 curr_num_tech = 0

90 curr_num_non = 0

91

92 considered_classes = []

93

94 curr_schedule = [0] * 130

95

96 # initializes semesters with assumptions

97 if s == 1:

98 curr_sem_classes = [21128 , 38101 , 76101]

99 max_num_classes = 5

100 curr_num_tech = 1

101 curr_num_non = 2

102 elif s == 3:

103 curr_sem_classes = [21201]

104 max_num_classes = 6

105 elif s == 4:

106 curr_sem_classes = [38230]

107 max_num_classes = 6

108 elif s == 5:

109 curr_sem_classes = [38330]

110 max_num_classes = 6

111 elif s == 6:

112 curr_sem_classes = [38304]

113 max_num_classes = 6

114 elif s == 7:

115 curr_sem_classes = [38110 , 38220 , 38430]

116 max_num_classes = 8

117 else:

118 curr_sem_classes = []

119 max_num_classes = 5

120

121 curr_num_classes = len(curr_sem_classes)

122

123 while curr_num_classes < max_num_classes:

124 # greedily pick classes that is the prereq for most from technical

+ semester

125 # then check if prereqs needed are satisfied

126 # then check if any other classes from chosen are scheduled during

that time

127 # then check if grad requirements are needed

128 prereq_sat = False

129 schedule_conflict = True

22

130 not_taken = False

131 not_considered = False

132 offered_in_sem = False

133

134 # gets set of classes that have not been taken yet or attempted to

have been taken

135 filtered_dict = {key: value for key , value in prereq_for.items ()

if (key not in considered_classes) and (key not in taken_classes)}

136 if not filtered_dict:

137 print("The dictionary is empty.")

138 break

139

140 # finds class that the most number of classes require it

141 max_prereq_class = max(filtered_dict , key=lambda k: len(

filtered_dict[k]))

142

143 # checks if all prereqs for chosen class have been taken

144 if all(c in taken_classes for c in needed_prereq[str(

max_prereq_class)]):

145 prereq_sat = True

146

147 # finds what semester it is offered

148 index = sched.index[sched[’Num’] == str(max_prereq_class)]. tolist

()[0]

149 print(index)

150 print(sched)

151 print(sched[’Sem’])

152 curr_offered_sem = sched[’Sem’][index]

153

154 # if the current semester matches the semester when the course is

offered

155 if (((s % 2) == 0) and curr_offered_sem == ’S’) or (((s % 2) == 1)

and curr_offered_sem == ’F’):

156 offered_in_sem = True

157

158 #check scheduling conflict

159 curr_offered_sem = sched[’Sem’][index]

160

161 max_prereq_class_sched = sched.loc[index , sched.columns.difference

([’Num’, ’Sem’])]

162

163 # check if there is an avaialble time in current schedule for when

the class is offered

164 result = [(a + b) % 2 for a, b in zip(curr_schedule ,

max_prereq_class_sched)]

165

166 chosen_time = []

167 chosen_yet = False

23

168

169 for i in range(len(curr_schedule) - 1):

170 if not chosen_yet:

171 if result[i] == 1 and result[i + 1] == 1:

172 schedule_conflict = False

173 chosen_yet = True

174 chosen_time.append(i)

175 chosen_time.append(i + 1)

176 if i != (len(curr_schedule) - 2):

177 if result[i + 2] == 1:

178 chosen_time.append(i + 2)

179

180 # checks if class has been considered or taken yet

181 if max_prereq_class not in considered_classes:

182 not_considered = True

183

184 if max_prereq_class in all_available_classes:

185 not_taken = True

186

187 # increments either nontechnical or technical count by 1

188 if max_prereq_class in technicals:

189 curr_num_tech += 1

190 else:

191 curr_num_non += 1

192

193 # checks if all constraints satisfied

194 if prereq_sat and (not schedule_conflict) and not_taken and (

curr_num_tech <= max_num_tech) and (curr_num_non <= max_num_non) and

not_considered and offered_in_sem:

195

196 print(f"adding {max_prereq_class}")

197

198 curr_sem_classes.append(max_prereq_class)

199 all_available_classes.remove(max_prereq_class)

200 taken_classes.append(max_prereq_class)

201 prereq_for.pop(max_prereq_class)

202

203 index = units.index[units[’Num’] == max_prereq_class]. tolist ()

[0]

204 curr_total_units += units[index][’Units’]

205

206 for t in range(len(chosen_time)):

207 curr_schedule[chosen_time[t]] == 1

208

209 considered_classes.append(max_prereq_class)

210

211 # count as grad req

212 if curr_total_units == total_req_units:

24

213 total_req_sat = True

214

215 if max_prereq_class in depth_req:

216 index = units.index[units[’Num’] == max_prereq_class]. tolist ()

[0]

217 curr_depth_units += units[index][’Units’]

218

219 if curr_depth_units == depth_req_units:

220 depth_req_sat = True

221

222 if max_prereq_class in d_req:

223 d_req_sat = True

224 if max_prereq_class in m_req:

225 m_req_sat = True

226 if max_prereq_class in cal_req:

227 cal_req_sat = True

228 if max_prereq_class in de_req:

229 de_req_sat = True

230 if max_prereq_class in p_req:

231 p_req_sat = True

232 if max_prereq_class in e_req:

233 e_req_sat = True

234 if max_prereq_class in bs_req:

235 bs_req_sat = True

236 if max_prereq_class in ps_req:

237 ps_req_sat = True

238

239 final_schedule[s] = (curr_sem_classes , curr_schedule)

240 print(final_schedule)

25

