
OR2 Notes

1 Dynamic Programming

Dynamic programing is an approach to solving problems rather than a technique for solving a particular
problem. The approach can be applied to a wide range of problems, although in many cases it leads to
impractical algorithms.

The problem to be tackled is formulated as making a sequence of decisions. Having made one decision, the
problem of choosing the remaining decisions is often a similar but ‘smaller’ version of the original problem.
This can lead to a ‘functional equation’ for finding the best initial decision and each subsequent decision.

1.1 Simple Production Problem

As a simple example we consider the following problem: a company estimates the demand dj for one of its
products over the next n periods. It costs the company c(x) to manufacture x units in any one period. All
demand must be met in the period in which. it occurs but stocks. may be built up to provide for demand
in future periods. The maximum stock that can be held at any time is H. How much should be produced
in each period to minimise the total cost of production. To make the problem self-contained we have to say
something about initial and final stocks. Suppose then that there is an initial stock of i0 and that any stock
left over at the end of period n is worthless.

The problem then is to decide how much to produce in period 1, how much to produce in period 2 etc.
Suppose we decide to produce an amount x1, in period 1, then at the beginning of period 2 we will have a
stock level of i0 + x1 − d− 1 and the problem of minimising the production cost over the next n− 1 periods.
We can write this down mathematically. Define the quantity fr(i) to be the minimum cost of meeting demand
in periods r, r + 1 . . . , n given that one has i units in stock at the beginning of period r.

Focussing temporarily on period 1, we can ask the question, if we decide’to produce an amount x, in period
1, what is the minimum production cost obtainable over the whole n periods? This minimum cost is clearly

c1(x1) + f2(i0 + x1 − d1). (1)

The first term is the cost of period:1 and the second term is the minimum cost over periods 2, 3, ...n given
that we produced x1.

The next question is what is the best value of x, to take. The answer must be, the value of x that minimises
(1), This will give us the minimum production cost for periods 1, 2, . . . , n, starting with a stocki0, i.e. f1(i0).
We have thus proved thet

f1(i0) = min
x1

{c(x1) + f2(i0 + x1 − d1)} . (2)

1



A similar argument about the decision to be taken at the beginning of period r given that the stock level is
currently i shows that in general

fr(i) = min
xr

{c(xr) + fr+1(i+ xr − dr)} . (3)

The range over which the ‘decision variable’ xr is to be minimised depends on our assumptions about the
problem. Firstly, we must have x2 ≥ 0 and since we must produce enough to meet the demand dr, we must
have i+ xr ≥ dr. The maximum stock level is H and consequently we must havé i+ xr − dr ≤ H. Thus xr,
is to be chosen in the range

max {0, dr − i} ≤ xr ≤ H + dr − i. (4)

Now the argument that produced (3) only read holds true for r ≤ n−1, basically because we have not defined
fn+1(i). Examining our assumption about final stocks we can see that this is equivalent to

fn(i) = min
xn

c(xn). (5)

This can be put into the framework of (3) by defining fn+1(i) = 0. Equations (3) and (5) give us a means
of solving our problem. We first calculate fn(i) for i = 0, 1, 2, . . . , H. We then use (3) to calculate fn−1(i)
for i = 0, 1, 2, . . . , H, and then fn−2(i) and so on until we reach f1(i). If the production quantities x need
not be integral then we have to approximate by dividing the range [0,H] into a suitable number of points -
depending on the accuracy required and computer storage and time available.

Let us solve the above problem when n = 4, dj = 3 in all periods, the maxinum stock level H = 4 and
c(x) = 16x− x2.

So that we can keep track of the optimal production policy we make a note of the value of x minimising the
R.H.S of (3). Denote this value by xr(i).

Calculation of f4 By definition f4(i) = min {18x− x2 : max {0, 3− i} ≤ x ≤ 7− i}.

f4(0) = 45 x4(0) = 3
f4(1) = 32 x4(1) = 2
f4(2) = 17 x4(2) = 1
f4(3) = 0 x4(3) = 0
f4(4) = 0 x4(4) = 0

paragraphCalculation of f3 By definition f3(i) = min {18x− x2 + f4(i+ x− 3) : max {0, 3− i} ≤ x ≤ 7− i}.

f3(0) = min {45 + f4(0), 56 + f4(1), 65 + f4(2), 72 + f4(3), 77 + f4(4)} = 72 and x3(0) = 6.

Continuing this we build up the table

i f4(i) x4(i) f3(i) x3(i) f2(i) x2(i) f1(i) x1(i)
0 45 3 72 6 109 7 142 7
1 32 2 65 5 104 2/6 135 5/6
2 17 1 56 4 89 1 126 1
3 0 0 45 0/3 72 0 109 0
4 0 0 32 0/2 65 0 104 0/2

2



Suppose for example that the initial stock level in period 1 is 0. We see from the table that the minimum
total production cost is 142. The optimal producticn policy is found as follows: x1(0) = 7 .e. given a stock
level of 0 at the beginning of period 1 the optimum production for period 1 is 7. Producing 7 in period 1
means we start period 2 with a stock level 4. From the table x2(4) = 0 i.e. given a stock level of at the
beginning of period 2 the optimm production for period 2 is 0. This means we start period 3 with stock level
1. Now x3(1) = 5, so we produce 5 units in period 3 and therefore start period 4 with initial stock 3. As
x4(3) = 0 we produce nothing in this period. Thus the optimal policy starting period 1 with zero stock is

x1 x2 x3 x4
7 0 5 0

We may in a similar manner use the table to find the optimum policy for all possible initial stock levels. In
the method above we have worked backwards from period n in calculating the optimum policy. This is called
the backward formulation of the problem.

In the backward formulation model we nad to be explicit on what happened to the final stock, in the forward
formulation we have to fix the initial stock at some value. For simplicity assume the initial stock is zero.

Now let us define the quantity gr(i) to be the minimum cost of meeting demand in periods 1, 2, . . . , r given
that the stock level at the end of period r is i. Then arguing in a similar manner to the backward formulation
we get

g1(i) = c(i+ d1) (6)

gr(i) = min
xr

{c(xr) + gr−1(i+ dr − xr)} (7)

where x3 in (7) ranges over
max {0, i+ dr −H} ≤ xr ≤ i+ dr.

Starting with g1 as defined in (6) we use (7) iteratively to calculate gn and we can thus calculate an optimum
for any value of the final stock.

Holding Cost We now add a cost of holding non-zero inventory. Suppose that this cost is h(i1, i2), where
i1 is the inventory at the start of the period and i2 is the inventory at the end of the period. Then we replace
(3) by

fr(i) = min
xr

{c(xr) + h(i, i+ xr − dr) + fr+1(i+ xr − dr)} .

Backordering Suppose we are allowed to be B behind in filling the demand, then the changes to (3) are
that we allow i ∈ [−B,H] and so (4) is replaced by

max {0, dr − i−B} ≤ xr ≤ H + dr − i.

Smoothing Production levels In the example we computed, the production changed significantly from
preiod to period. Suppose we do like that and that we had a cost s(xr−1, xr). We replace (3) by

fr(x, i) = min
xr

{c(xr) + s(xr−1, xr) + fr+1(xr, i+ xr − dr)} .

Here x represents the production level for the previos period.

3



1.2 Knapsack Problem

w1, w2, . . . , wn,W, c1, c2, . . . , cn are positive integers.
Problem

Maximize
n∑︂

j=1

cjxj

Subject to
n∑︂

j=1

wjxj ≤ W

xj ≥ 0 and integer j = 1, 2, . . . , n

A scout is going on a trip and has a knpasack that can hold at most W pounds. They have to pack items
of type 1, 2, . . . , n. Each item of type j weighs wj pounds and has value cj. They can take more than one of
each item and they want to maximise the value of the items packed.

Let now fr(w) denote the maximum to the above integer program when W is replaced by w and n is replaced
by r.
First recurrence:

fr(w) = max
0≤x≤⌊w/wr⌋

{crx+ fr−1(w − wrx)} .

For any choice of x = xr we gain crx plus the optimum available from the remining variables x1, x2, . . . , xr−1.

Second recurrence:

fr(w) = max

{︄
fr−1(w) xr = 0 in optimum.

cr + fr(w − wr) xr ≥ 1 in optimum.

Example:

Maximize 2x1 + 3x2 + 5x3 + 7x4

Subject to 2x1 + 3x2 + 4x3 + 5x4 ≤ 12

x1, . . . , x4 ≥ 0 and integer

w f1 δ1 f2 δ2 f3 δ3 f4 δ4
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
2 2 1 2 0 2 0 2 0
3 2 1 3 1 3 0 3 0
4 4 1 4 0 5 1 5 0
5 4 1 5 1 5 0/1 7 1
6 6 1 6 0/1 7 1 7 0/1
7 6 1 7 1 8 1 9 1
8 8 1 8 0/1 10 1 10 0/1
9 8 1 9 1 10 1 12 1
10 10 1 10 0/1 12 1 14 1
11 10 1 11 1 13 1 14 1
12 12 1 12 0/1 15 1 16 1

4



Solution Let xr(w) denote the value of xr in the optimum solution for ω. δr(ω) = 1 iff xr(w) ≥ 1.

δ4(12) = 1 and so x4(12) ≥ 1. δ4(7) = 1 and so x4(7) ≥ 1. δ4(2) = 0 and so x4(12) = 2.
δ3(2) = 0 and so x3(2) = 0.
δ2(2) = 0 and so x2(2) = 0.
δ1(2) = 1 and so x1(2) = 1.

Thus the solution is x1 = 1, x2 = x3 = 0, x4 = 2.

Execution time The above algorithm requires O(nW ) arithmetic operations. O(1) for each choice of r, ω.

Another recurrence: let

f(w) = Max.
n∑︂

j=1

cjxj

Subject to
n∑︂

j=1

wjxj ≤ w

xj ≥ 0 and integer j = 1, 2, . . . , n

Then if µ = minj wj,

f(w) =

{︄
maxj=1,2,...,n(cj + f(w − wj)) w ≥ µ.

0 w < µ.

1.3 Replacement of a machine

A company uses a machine to manufacture a single product over the next N periods. The demand in period
n is known to be dn and the maximum amount of stock that can be held at one time is H. The cost of
producing an amount x depends on the current age of the machine. It costs c(x, t) to produce an amount x
using a machine of age t. A machine of age T has to be scrapped. Assume that we start in period 0 with a
new machine. A new machine costs A to buy. Here is how we formulate the problem: Let fn(t, h) denote the
minimum cost of meeting demand in periods n, n+1, . . . , N if we start period n with a machine of age t and
h units in stock. Then

fn(t, h) = min

⎧⎪⎪⎨⎪⎪⎩
min

0≤x≤H−h+dn
x≥dn−h

{c(x, t) + fn+1(t+ 1, x+ h− dn)} Keep old machine

min
0≤x≤H−h+dn

x≥dn−h

{A+ c(x, 0) + fn+1(1, x+ h− dn)} Replace machine

The above recurrence is computed for n = N,N − 1, . . . , 1, t = 0, 1, . . . , T − 1 and h = 0, 1, . . . , H. If t = T
then we let

fn(T, h) = A+ fn(0, h).

5



1.4 Probabilistic production problem

A company needs to meet demand for its single product over the next N periods. The cost of producing an
amount x is c(x) in any period. The demand is a random variable and let us assume that

P(dn = d) = pn,d d ≥ 0.

The company can store up to amount H at any time. The company will try to meet the demand, but if it is
too large then there is a penalty cost of π for any demand left unsatisfied. The company wishes to minimises
the expected cost of production. Assume first that the company has to make its period n production decision
before it knows dn. Let fn(h) denote the minimum expected cost of production in periods n, n + 1, . . . , N if
we start period n with h units in stock. Then, if ξ+ = max{0, ξ},

fn(h) = min
x≥0

(︄
c(x) +

∑︂
d≥0

pn,d(fn+1(min{(x+ h− d)+, H}) + πmax{0, d− (h+ x)})

)︄
.

As an alternative criterion, suppose one has to minimise expected cost subject to having at least a 90% chance
of meeting demand in every period. Then we let fn(h) be the minimum cost of operating under these criteria
for a given n and h.

fn(h) = min
x≥αh

{c(x) +
∑︂
d≥0

pn,d(fn+1(min{(x+ h− d)+, H}) + π(d− (h+ x))+)}

where αh = minα :
∑︁

d>α+h pn,d ≤ .1.

If the company can make its period n production decision after it knows dn then we have

fn(h) =
∑︂
d≥0

pn,d min
x≥(d−h)+

x≤H+d−h

{c(x) + fn+1(h+ x− d)}.

1.5 Minimal triangulation of a convex polygon

Let P be a convex polgon with vertices X1, X2, . . . , Xn. We want to triangulate it in such a way as to minimise
the sum of the lengths of the chords used.

x1

x2

x3 x4

x5

x6

x7x8

x1

x2

x3 x4

x5

x6

x7x8

6



Let m∗
k,l be the length of the minimum length triangulation of the polygon defined by Xk, Xk+1, . . . , Xl, Xk.

Then
m∗

k,l = min
k<j<l

{m∗
k,j +m∗

j,l + |Xk −Xj|+ |Xj −Xl|} (8)

where |Xk −Xj| is the length of the edge Xk, Xj etc.

Here m∗
k,l = 0 if l = k + 1 and we use the recurrence (8) to compute what we want i.e. m∗

1,n.

1.6 Breaking up a stick

A stick of length L is to be broken into pieces of integer length. Let vi,j be the value of a piece [i, i+1, . . . , j].
How should the stick be broken in order to maximise the total value.

let f(r), r = 0, 1, . . . , L be the maximum value obtainable from breaking up [0, r]. Then

f(0) = 0 and f(r) = max
0≤i<r

{f(i) + vi,r} , 0 < r ≤ L.

So f(L) can be computed in O(L2) operations.

Suppose now that the stick must be broken into k pieces. Now use f(j, r) to be the maximum obtainable
from breaking [0, r] into j pieces. Then,

f(j, r) =

{︄
0 j > r.

max0≤i<r {f(j − 1, i) + vi,r} j ≤ r.

So f(k, L) can be computed in O(kL2) operations.

1.7 A problem with an infinite time horizon

A system can be in one of a set V of possible states. For each v ∈ V one can choose any w ∈ V and move
to w at a cost of c(v, w). The system is to run forever and it is required to minimise the discounted cost of
running the system, assuming that the discount factor is α. A policy is a function π : V → V . So if |V | = n
then there are nn distinct policies to choose from.

Example

Costs

⎡⎣ 2 1 3
4 3 2
1 3 2

⎤⎦ α = 1/2.

Let π be a policy and let yv be the discounted cost of this policy, starting at v ∈ V . Then

yv = c(v, π(w)) + αyπ(v) v ∈ V. (9)

Example Let π(1) = π(2) = π(3) = 1. Then

y1 = 2 +
1

2
y1

y2 = 4 +
1

2
y1

y3 = 1 +
1

2
y1.

7



So
y1 = 4, y2 = 6, y3 = 3.

Problem: Find the policy π∗ which minimises yv simultaneously for all v ∈ V .

Theorem 1. Optimality Criterion
π∗ is optimal iff its values y∗v satisfy

y∗v = min
w∈V
{c(v, w) + αy∗w} ∀v ∈ V. (10)

Proof Suppose that (10) does not hold for some π.

yu > c(u, λ(u)) + αyλ(u) u ∈ U
yv = min

w∈V
{c(v, w) + αyw} u /∈ U

Define p̃ by p̃(u) = λ(u) for u ∈ U and p̃(v) = π(v) for v /∈ U . Then for u ∈ U ,

yu > c(u, λ(u)) + αyλ(u)

ỹu = c(u, λ(u)) + αỹλ(u)

So if ξv = yv − ỹv for v ∈ V then
ξu > αξp̃(u) u ∈ U. (11)

Also, for v /∈ U

yv = c(v, π(v)) + αyπ(v)

ỹv = c(v, π(v)) + αỹπ(v)

and so
ξv = αξp̃(v) v /∈ U. (12)

It follows from (11), (12) that

ξv ≥ αtξp̃t(v) ∀v /∈ U, t ≥ 1

ξu > αtξp̃t(u) ∀u ∈ U, t ≥ 1

Letting t→∞ we see that
ξv ≥ 0 ∀v and ξu > 0 ∀u ∈ U.

Thus p̃ is strictly better than π i.e. if (10) does not hald, then we can improve the current policy.

Conversely, if (10) holds and ˆ︁π is any other policy and ηv = ˆ︁yv − y∗v then

ˆ︁yv = c(v, ˆ︁π(v)) + αˆ︁yˆ︁π(v)
y∗v ≤ c(v, ˆ︁π(v)) + αy∗ˆ︁π(v)

and so
ηv ≥ αηˆ︁π(v) ≥ · · · ≥ αtηˆ︁πt(v) for t ≥ 1

which implies that ηv ≥ 0 for v ∈ V .

Policy Improvement Algorithm

8



1. Choose arbitrary initial policy π.
2. Compute y as in (9).
3. If (10) holds – current π is optimal, stop.
4. If (10) doesn’t hold then
5. compute λ by

yλ(v) = minw{c(v, w) + αyw}.
6. π ← λ.
7. goto 2.

In our example with π = (1, 1, 1). First compute λ = (1, 3, 1). Re-compute y = (39
28
, 11
14
, 95
56
). Now λ = π i.e.

(1) holds and we are done.

1.7.1 Probabilistic version

Let us introduce some probability: Suppose now that for each i ∈ V there is a set Xi of possible decisions.
Suppose that if the system is in state i and decision x ∈ Xi is taken then

• The expected cost of the immediate step is c(x, i).

• The next state is j with probability P (x, i, j)

A policy π specifies a decision π(i) ∈ Xi for each i ∈ V .

First let us evaluate this policy. Let yi denote the expected discounted cost of pursuing policy π indefinitely,
starting from i ∈ V . Then

yi = c(π(i), i) + α
∑︂
j∈V

P (π(i), i, j)yj

or

y = cπ + αPπy or y = (I − αPπ)
−1cπ =

∞∑︂
t=0

(αPπ)
tcπ

where Pπ(i, j) = P (π(i), i, j) and cπ(i) = c(π(i), i).

So policy π can be evaluated.

Theorem 2. Optimality criterion:

c(π(i), i) + α
∑︂
j∈V

P (π(i); i, j)yj = min
x∈Xi

{︄
c(x, i) + α

∑︂
j∈V

P (x, i, j)yj

}︄
(13)

π is optimal iff (13) holds.

Proof Suppose first that (13) does not hold. Define a new policy ˆ︁π by

c(ˆ︁π(i), i) + α
∑︂
j∈V

P (ˆ︁π(i), i, j)yj = min
x∈Xi

{︄
c(x, i) + α

∑︂
j∈V

P (x, i, j)yj

}︄

9



We have

yi ≥ c(ˆ︁π(i), i) + α
∑︂
j∈V

P (ˆ︁π(i), i, j)yj (14)

ˆ︁yi = c(ˆ︁π(i), i) + α
∑︂
j∈V

P (ˆ︁π(i), i, j)ˆ︁yj
and so

(I − αPˆ︁π)(y − ˆ︁y) ≥ 0

and then since (I − αPˆ︁π)−1 has only non-negative entries:

(I − αPˆ︁π)−1(I − αPˆ︁π)(y − ˆ︁y) ≥ 0 or y − ˆ︁y ≥ 0

But ˆ︁y ̸= y since there is strict inequality in (14) for at least one i and ˆ︁π is strictly better than π.

Conversely, if (13) holds and ˆ︁π is any other policy, we get that

yi ≤ c(ˆ︁π(i), i) + α
∑︂
j∈V

P (ˆ︁π(i), i, j)yj
ˆ︁yi = c(ˆ︁π(i), i) + α

∑︂
j∈V

P (ˆ︁π(i), i, j)ˆ︁yj
and so

(I − αPˆ︁π)(y − ˆ︁y) ≤ 0

and then since (I − αPˆ︁π)−1 has only non-negative entries:

(I − αPˆ︁π)−1(I − αPˆ︁π)(y − ˆ︁y) ≤ 0 or y − ˆ︁y ≤ 0

□

A taxi driver’s territory comprises 3 towns A,B,C. If he is in town A he has 3 altrenatives:

1. He can cruise in the hope of picking up a passenger by being hailed.

2. He can drive to the nearest cab stand and wait in line.

3. He can pull over and wait for a radio call.

In town C he has the same 3 alternatives, but in town B he only has alternatives 1 and 2.

The transition probabilities and the rewards for being in the various states and making the various transitions
are as follows:

A:

P =

⎡⎣ .5 .25 .25
.0625 .75 .1875
.25 .125 .625

⎤⎦ R =

⎡⎣ 10 4 8
8 2 4
4 6 4

⎤⎦
B:

P =

[︃
.5 0 .5

.0625 .875 .0625

]︃
R =

[︃
14 0 18
8 16 8

]︃
10



C:

P =

⎡⎣ .25 .25 .5
.125 .75 .125
.75 .0625 .1875

⎤⎦ R =

⎡⎣ 10 2 8
6 4 2
4 0 8

⎤⎦
He wishes to find the policy which maximises his long run average gain per period.

1.8 Traveling Salesperson problem

We are given a matrix of costs c(i, j), 1 ≤ i, j ≤ n. The problem is to find a permutation π of [n] = {1, 2, . . . , n}
that minimises

TSP (π) = c1,π(1) + c(π(1), π2(1)) + ·+ c(πn)(1), 1).

This represents the total cost of a “tour through [n] in the order 1, π(1), π2(1), . . . , πn(1), 1.

There are (n− 1)! distinct tours (each tour, as a set of directed edges of K⃗n, arises from n distinct permuta-
tions.)

With DP we can solve the problem in O(n22n) time. For 1 ∈ S ⊆ [n] and x ∈ S, let f(x, S) denote the
minimum cost of a path that begins at 1, ends at x and visits each vertex in S exactly once. Then, f(x, S) = 0
for S = {1} and

f(x, S) = min{f(z, S \ {x}) + c(z, x) : z ∈ S \ {x}}.

There are
(︁
n−1
k−1

)︁
choices for |S| = k and given S there are k− 1 choices for x and then k− 2 choices for z. So,

to compute f(x, [n]) for all 1 ̸= x ∈ [n] takes time

n∑︂
k=2

(k − 1)(k − 2)

(︃
n− 1

k − 1

)︃
=

n∑︂
k=3

(k − 1)(k − 2)

(︃
n− 1

k − 1

)︃
=

(n− 1)(n− 2)
n∑︂

k=3

(︃
n− 3

k − 3

)︃
= (n− 1)(n− 2)2n−3.

To finish we compute min{f(x, [n]) + c(x, 1) : x ̸= 1).

11



2 Integer Programming

This is the name given to Linear Programming problems which have an extra constraint in that some or all
of the variables have to be integer.

2.1 Examples

Capital budgeting A firm has n projects that it would like to undertake but because of budget limitations
not all can be selected. In particular project j is expected to produce a revenue of cj but requires an
investment of ai,j in time period i fori = 1, , ...m. The capital available in time period i is bi. The problem of
maximising revenue subject to the budget constraints can be formulated as follows: let xj = 0/1 correspond
to not proceeding or respectively proceeding with project j then we have to

Maximise
n∑︂

j=1

cjxj

Subject to
n∑︂

j=1

ai,jxj ≤ bi, i = 1, . . . ,m.

0 ≤ xj ≤ 1, xj integer for j = 1, 2, . . . , n.

Depot location We consider here a simple problem of this type: a company has selected m possible sites
for distribution of its products in a certain area. There are n customers in the area and the transportation
cost of supplying the whole of customer j’s requirements over the given planning period from potential site i
is ci,j. Should site i be developed it will cost fi to construct a depot there. Which sites should be selected to
minimise the total construction plus transport cost?

To do this we introduce variables y1, . . . , ym which can only take values 0 or 1 and correspond to a particular
site being not developed or developed respectively. We next define xi,j to be the fraction of customer j’s
requirements supplied from depot i in a given solution. The problem can then be expressed,

Minimise
m∑︂
i=1

n∑︂
j=1

ci,jxi,j +
m∑︂
i=1

fiyi

Subject to
m∑︂
i=1

xi,j = 1, j = 1, 2, . . . , n

xi,j ≤ yi, i = 1, 2, . . . ,m, j = 1, 2, . . . , n

xi,j ≥ 0, 0 ≤ yi ≤ 1, yi integer, i = 1, 2, . . . ,m, j = 1, 2, . . . , n.

Note that if yi = 0 then fiyi = 0 and there is no contribution to the total cost. Also, xi,j ≤ yi implies xi,j = 0
and no goods are distributed from site i. This corresponds exactly to there not being a depot at location i.

On the other hand, if yi = 1, then fiyi = fi which is the cost of constructing depot i. Also, xi,j ≤ yi becomes
xi,j ≤ 1 which holds anyway from the first constraint.

Set Covering Let S1, S2, . . . , Sn be a family of subsets of a set S = {1, 2, . . . ,m}. A covering of S is a
subfamily Sj for j ∈ I such that S =

⋃︁
j∈I Si. Assume that each subset Sj has a cost cj > 0 associated with

12



it. We define the cost of a cover to be the sum of the costs of the subsets included in the cover.

The problem of finding a cover of minimum cost is of particular practical significance. As an integer program
it can be specififed as follows: define the m× n matrix A = [ai,j] by

ai,j =

{︄
1 i ∈ Sj.

0 i /∈ Sj.

Let xj, j = 1, 2, . . . , n be 0 /1 variables with xj = 1(0) to mean set Sj is included (respectively not included)
in the cover. The problem is to

Minimize
n∑︂

j=1

cjxj

Subject to
n∑︂

j=1

ai,jxj ≥ 1, i = 1, 2, . . . ,m. (15)

xj = 0 or 1, j = 1, 2, . . . , n.

The m inequality constraints have the following significance: since xj = 0 or 1 and the coefficients i,jy are
also 0 or 1 we see that

∑︁n
j=1 ai,jxj can be zero only if xj = 0 for all j such that ai,j = 1. In other words only

if no set Sj, is chosen such that i ∈ Sj. The inequalities are put in to avoid this.

As an example consider the following simplified airline crew scheduling preblem. An airline has m scheduled
flight-iegs per week in its current service. A flight-leg being a single flight flown by a single crew e.g. London
- Paris leaving Heathrow at 10.30 am. Let Sj, j = 1, 2, . . . , n be the collection of all possible weekly sets of
flight-legs that can be flown by a single crew. Such a subset must take account of restrictions like a crew
arriving in Paris at 11.30 am, cannot take a flight out of New York at 12.00 pm. and so if cj is the cost of
set Sj of flight-legs then the problem of minimising cost subject to covering all flight-legs is a set coverirg
problem. Note that if crews are not allowed to be passengers on a Flight e.g. so that they can be flown to
their next flight, then we have to make (15) an equality – the set partitioning problem.

General terminology The most general problem called the mixed integer programming problem can be
specified as

Minimise x0 = cTx

Subject to Ax = b

xj ≥ 0, j = 1, 2, . . . , n.

xj integer for j ∈ I

where I ⊆ [n].

When I = [n] and all the quantities cj, ai,j, bi are integer then we have a pure integer programming problem.

Further uses of integer variables
(i) If a variable x can only take a finite number of values p1, p2, . . . , pm, then we can replace x by the expression

x = p1w1 + p2w2 + · · ·+ pmwm, w1 + w2 + · · ·+ wm = 1, wi = 0 or 1 for i = 1, 2, . . . ,m.

13



For example X might be the output of a plant which can be small p1, medium p2 or large p3. The cost c(x)
of the plant could be represented by c1w1 + e2w2 + c3w3 where c1in the cdost of a small plant etc.

(ii) In L.P. one generally consider all constraints to be holding simultaneously. It is possible that the variable
might have to satisfy one or other of a set of constraints.

0 ≤ x ≤M and (0 ≤ x ≤ 1 OR x ≥ 2).

We replace this by
x ≤ 1 +M(1− δ) and x ≥ 2−Mδ and x ≥ 0, δ = 0/1.

Hardness Integer programming problems generally take much longer to solve then the corresponding linear
program obtained by ignoring integrality. It is wise therefore to consider the possibility of solving as a straight
forward L.P. and then rounding e.g, in the trim-loss problem. This is not always possible for example if x is
a 0/1 variable such that x = 0 means do build a plant and x = 1 means build a plant then rounding x1/2 is
not very satisfactory.

2.2 A cutting plane algorithm for the pure problem

The rationale behind this approach is:-

Step 1 Solve the continuous problem as an L.P. i.e. ignore integrality.

Step 2 If by chance the optimal basic variables are all integer then the optimum solution has been found.
Otherwise,

Step 3 Generate a cut i.e. a constraint which is satisfied by all integer solutions to the problem but not by
the current L.P. solution.

Step 4 Add this new constraint and go to Step 1.

It is straight forward to show that if at any stage the current L.P. Solution x is integer it is the optimal integer
solution. This is because x is optimal over a region containing all feasible integer solutions. The problem is to
define cuts that ensure the convergence of the algorithm in a finite number of steps. The first finite algorithm
was devised by R.E, Gomory. It is based on the following construction: let

a1x1 + a2x2 + · · ·+ anxn = b

be an equation which is to be satisfied by non-negative integers x1, x2, . . . , xn and let S be the set of possible
integer solutions.

For a real number ξ we define ⌊ξ⌋ to be the largest integer which is less than or equal to ξ. Thus ξ = ⌊ξ⌋+ ε
where 0 ≤ ε < 1.

⌊6.5⌋ = 6, ⌊3⌋ = 3, ⌊−4.5⌋ = −5.

14



Now let aj = ⌊aj⌋+ fj and b = ⌊b⌋+ f . Then we have

n∑︂
j=1

(⌊aj⌋+ fj)xj = ⌊b⌋+ f

and hence
n∑︂

j=1

fjxj − f = ⌊b⌋ −
n∑︂

j=1

⌊aj⌋xj. (16)

Now for x ∈ S, the RHS of (16) is an integer and the LHS is at least −f > −1. This implies that

n∑︂
j=1

fjxj − f ∈ {0, 1, . . .} .

Suppose now that one has solved the LP relaxation and the solution is not integer. Therefore there is a basic
variable xi with

xi +
∑︂
j /∈I

bi,jxj = bi,0

where bi,0 is not an integer. (Here I is the set of indices of basic variables and the bi,j are the coefficients of
the simplex tableaux.)

Putting fi = bi,j − ⌊bi,j⌋ for j /∈ I and f = bi,0 − ⌊bi,0⌋ we see that∑︂
j /∈I

fjxj > f (17)

for all integer solutions to our problem.

Now f > 0 since bi,0 is not an integer and so (17) is not satisfied by the current L.P. solution since xj = 0 for
j /∈ I and so (17) is a cut.

The initial continuous problem solved by the algorithm is the L.P. problem obtained by ingoring integrality.

Statement of the Algorithm

Step 1 Solve current continuous problem.

Step 2 If the solution is integral it is the optimal integer solution, otherwise.

Step 3 Choose a basic variable xi, which is currently non-integer, construct the corresponding constraint (17)
and add it to the problem. Go to step 1.

We note that the tableau obtained after adding the cut is dual feasible and so the dual simplex algorithm
can be used to re-optimise.

15



Example:

Maximise x1 + 4x2

Subject to 2x1 + 4x2 ≤ 7.

10x1 + 3x2 ≤ 14.

x1, x2 ≥ 0 and integer.

B.V. x1 x2 x3 x4 ξ1 ξ2 RHS
x0 −1 −4 0
x3 2 4 1 7
x4 10 3 1 14

x0 1 1 7
x2 1/2 1 1/4 7/4 cut made from this row
x4 17/2 −3/4 1 35/4
ξ1 −1/2 −1/4 1 −3/4

x0 1/2 2 11/2
x2 1 1 1
x4 −5 1 17 −4
x1 1 1/2 −2 3/2

x0 1/10 37/10 51/10 cut made from this row
x2 1 1 1
x3 1 −1/5 −17/5 4/5
x1 1 1/10 −3/10 11/10
ξ2 −1/10 −7/10 1 −1/10

x0 3 5
x2 1 1 1
x3 1 −1 −2 1
x1 −1 1 1
x4 7 −10 1

• One can show that the Gomory cuts
∑︁

j fj > f when expressed in terms of the original non-basic
variables have the form

∑︁
j wjxj ≤ W where the wj,W are integer and the value of

∑︁
j wjxj after

solving the current continuous problem is W + ε where 0 < ε < 1 assuming the current solution is non-
integer, Thus the cut is obtained by moving a hyperplane parallel to itself to an extent which cannot
exclude an integer solution. It is worth noting that the plane can usually be moved further without
excluding integer points thus generating deeper cuts. For a discussion on how this can be done see the
reference given for integer programming,

• After adding a cut and carrying out one iteration of the dual simplex algorithm the slack variable
corresponding to this cut becomes non-basic, If during a succeeding iteration this slack variable becomes
basic then it may be discarded along with its current row without affecting termination. This means
that the tableau never has more than n+ 1 rows or m+ n columns.

• A valid cut can be generated from any row containing a non-integral variable, One strategy is to choose
the variable with the largest fractional part as this helps’ to produce a ”large’ change in the objective

16



valve. It is interesting that finitness of the algorithm has not been proved for this strategy although
finitness has been proved for the strategy of always choosing the ‘topmost’ row the tableau with a
non-integer variable.

• The behaviour of this algorithm has been erratic. It has for example worked well on set covering
problems but in other cases the algorithm has to be terminated because of excessive use of computer
time, This raises an important point; if the algorithm is stopped prematurely then one does not have a
good sub-optimal solution to use. Thus in some sense the algorithm is unreliable,

17



3 Branch and bound

We consider the problem P0:
Minimize f(x) subject to x ∈ S0.

Here S0 is our set of feasible solutions and f : S0 → ℜ.

As we proceed in Branch-and-Bound we create a set of sub-problems P . A sub-problem P ∈ P is defined by
the description of a subset SP ⊆ S0. We also keep a lower bound bP where

bP ≤ min {f(x) : x ∈ SP} .

At all times we act as if we have x∗ ∈ S0, some known feasible solution to P0 and v∗ = f(x∗). If we do not
actually have a solution x∗ then we let v∗ = −∞. We will have a procedure bound that computes bP for a
sub-problem P . In many cases, bound sometimes produces a solution xP ∈ S0 and sometimes determines
that SP = ∅.

We initialize P = {P0}.

Branch and Bound:

Step 1 If P = ∅ then x∗ solves the problem.

Step 2 Choose P ∈ P . P ← P \ {P}.

Step 3 Bound: Run bound(P ) to compute bP .

Step 4 If SP = ∅ or bP ≥ v∗ then we consider P to be solved and go to Step 1.

Step 5 If bound generates xP ∈ S0 and f(xP ) < v∗ then we update, x∗ ← xP , v
∗ ← f(xP ).

Step 6 Branch: Split P into a number of subproblems Qi, i = 1, 2, . . . , ℓ, where SP =
⋃︁ℓ

i=1 SQi
. And

SQi
̸= SP is a strict subset for i = 1, 2, . . . , ℓ.

Step 7 P ← P ∪ {Q1, Q2, . . . , Qℓ}.

Assuming S0 is finite, this procedure will eventually terminate with P = ∅. This is because the feasible sets
SP are getting smaller and smaller as we branch.

Most often the procedure bound has the following form: while it may be difficult to solve P directly, we may
be able to find TP ⊇ SP such that there is an efficient algorithm that determines whether or not TP = ∅ and
finds ξP ∈ TP that minimizes f(ξ), ξ ∈ TP , if TP ̸= ∅. In this case, bP = f(ξP ) and Step 5 is implemented if
ξP ∈ S0. We call the problem of minimizing f(ξ), ξ ∈ TP , a relaxed problem.

Examples:

Ex. 1 Integer Linear Programming. Here SP is the set of integer solutions and TP is the set of solutions,
if we ignore integrality. The procedure bound solves the linear program. If the solution ξP is not
integral, we choose a variable x, whose value is ζ /∈ Z and form 2 sub-problems by adding x ≤ ⌊z⌋ to
one and x ≥ ⌈z⌉ to the other.

18



Ex. 2 Traveling Salesperson Person Problem (TSP): Here SP is the set of tours i.e. single directed
cycles that cover all the vertices. We can take TP to be the set of collections of vertex disjoint directed
cycles that cover all the vertices. More precisely, to solve the TSP we must minimise

∑︁n
i=1C(I, π(i))

as π ranges over all cyclic permutations. Our relaxation is to minimise
∑︁n

i=1C(I, π(i)) as π ranges
over all permutations, i.e. the assignment problem. We branch as follows. Suppose that the as-
signment solution consists of cycles C1, C2, . . . , Ck, k ≥ 2. Choose a cycle, C1 say. Suppose that
C1 = (v1, v2, . . . , vr) as a sequence of vertices. Then in Q1 we disallow π(v1) = v2, in Q2 we insist that
π(v1) = v2, but that π(v2) ̸= v3, in Q3 we insist that π(v1) = v2, π(v2) = v3, but that π(v3) ̸= v4 and
so on.

Ex. 3 Implicit Enumeration: Here the problem is

Minimize
n∑︂

j=1

cjxj subject to
n∑︂

j=1

ai,jxj ≥ bi, i ∈ [m], xj ∈ {0, 1} , j ∈ [n].

A sub-problem is assciated with two sets I, O ⊆ [n]. This the sub-problem PI,O where we add the
constraints xj = 1, j ∈ I, xj = 0, j ∈ O. We also check to see if xj = 1, j ∈ I, xj = 0, j /∈ I gives
an improved feasible solution. As a bound bI,O we use

∑︁
j /∈O max {cj, 0}. To test feasibility we check

that
∑︁

j /∈O max {ai,j, 0} ≥ bi, i ∈ [m]. To branch, we split PI,O into PI∪{j},O and PI,O∪{j} for some
j /∈ I ∪O.

19



4 Combinatorial Optimization

4.1 Shortest path

4.1.1 Non-negative lengths

We are given a digraph D = ([n], E) with vertex set [n]. Let P denote the set of paths in D and let ℓ : P → ℜ.
Think initially that there are edge lengths ℓ : E → ℜ+ and that

ℓ(P ) = ℓreg(P ) =
∑︂
e∈P

ℓ(e).

Dijstra’s Algorithm:
begin
for i = 2, . . . , n, d(i)← ℓ(1, i), Pi ← (1, i);S1 ← {1};

for k = 2, . . . , n do;
begin

d(i) = min {d(j) :/∈ Sk};
Sk+1 ← Sk ∪ {i};
for j /∈ Sk+1 do
if d(j) > ℓ(Pi, j) then d(j)← ℓ(Pi, j), Pj ← (Pi, j);

end
end

Lemma 3. On termination of Dijstra’s Algorithm, d(i) = ℓ(Pi) is the minimum length of a path from 1 to i,
for all i

Proof. At each stage we can verify by induction on k that for each i /∈ Sk, d(i) is the minimum length of a
path from 1 to i for which all vertices but i are in Sk. If true for k then when we add vertex i we simply
update the d’s correctly.

Suppose that i is added at Step r. Let P = (x0 = 1, x2, . . . , xm = i) be a path from 1 to i. Suppose that
x0, x1, . . . , xl−1 ∈ Sr−1 and xl /∈ Sr−1. Then,

ℓ(P ) ≥ ℓ(x0, x1, . . . , xl) ≥ d(xl) ≥ d(i) = ℓ(Pi).

Note now that all we have assumed about ℓ is that

P = (P1, P2) implies ℓ(P1) ≤ ℓ(P ). (18)

In which case, we can apply the algorithm to solve problems where path length is defined as follows:

Time dependent path lengths: Suppose edge e = (x, y) has two parameters ae, be ≥ 0 and that if we
start a walk at time 0 and arrive at x at time t then the edge length is ae + bet. Suppose that
P = (e0, e1, . . . , ek) as a sequence of edges and that Pi = (e0, e1, . . . , ei). Then we now have ℓ(P0) = ae0
and ℓ(Pi) = aei + beiℓ(Pi−1).

20



Visit S in a fixed order: S is a set of vertices and feasible paths must visit S in some fixed order. Individual
edge lengths are non-negative. Then

ℓ(P ) =

{︄
ℓreg(P ) P ∩ S visited in correct order.

∞ Otherwise.

Avoid S: S is a set of vertices and there is a penalty of f(k) for visiting S, k times. Here f(k) is monotone
increasing in k. Individual edge lengths are non-negative. Then ℓ(P ) = ℓreg(P ) + f(|V (P ) ∩ S|.

4.2 No negative cycles

Our algorithms find shortest walks between vertices. When there are no negative length cycles, this amounts
to finding shortest paths. When there are negative cycles, there will sometimes be no minimum length walk.

Suppose first that P is a path that begins at vertex 1 and x is an arbitrary vertex. Then we define

P ∗ x =

{︄
(P, x) x /∈ P.
P (1, x) x ∈ P.

Here P (1, x) is the subpath of P from 1 to x.

Assumption: Suppose that P,Q are paths from vertex 1 to vertex y. Suppose that x /∈ P and that
ℓ(Q) ≤ ℓ(P ). Then ℓ(Q ∗ x) ≤ ℓ(P, x).

Putting P = Q we see that when ℓ = ℓreg this requires ℓ(C) ≥ 0 for a cycle C. Here is an example where
ℓ = ℓreg and there are no negative cycles.

Electric cars: Suppose when we drive along edge e, ℓ(e) the amount of energy used is ℓ(e). This is normally
positive, but when going down hill it can be negative. In this scenario, there can be no negative cycles under
ℓreg.

Assume that the edges of D are E = {ei = (xi, yi), i = 1, 2, . . . ,m}. Let Pi, i = 1, 2, . . . , n be a collection of
paths, where P1 = (1) and Pi goes from 1 to i.

Lemma 4. The following is a necessary and sufficient condition for P1, P2, . . . , Pn to be a collection of shortest
paths with start vertex 1:

ℓ(Py) ≤ ℓ(Px ∗ y) for all (x, y) ∈ E. (19)

Proof. It is clear that (19) is necessary. If it fails then Px ∗ y is “shorter” than Py.

Suppose that (4) holds. Let P = (1 = x0, x1, x2, . . . , xk = i) be a path from 1 to i. We show by induction on
j that

ℓ(Pxj
) ≤ ℓ(P (1, x1, x2, . . . , xj)). (20)

Now when j = 0, both sides of (20) are zero. Then if it holds for some j ≥ 0 then (19) and the inductive
assumption imply that

ℓ(Pxj+1
) ≤ ℓ(Pxj

∗ xj+1) ≤ ℓ(P (1, x1, . . . , xj+1)).

Thus (19) is sufficient.

21



Ford’s Algorithm:
begin
for i = 2, . . . , n, d(i)← ℓ(1, i), Pi ← (1, i);

repeat;
flag ← 0;
for i = 1, 2, . . . ,m;
begin

if ℓ(Pyi) > ℓ(Pxi
∗ yi) then;

begin;
Pyi ← (Pxi

∗ yi); flag ← 1;
end;

end;
until flag = 0;
end

end

Lemma 5. Ford’s algorithm terminates after at most n rounds with a collection of shortest paths.

Proof. If the algorithm terminates then because flag = 0 at this point, we have that (57) holds. Thus we
have shortest paths.

We now argue that if the minimum number of arcs in a shortest path from 1 to i has νi edges then Pi is
correct after νi rounds. We argue by induction. This is true for i = 1 and νi = 0. Suppose that it is true for
all i such that νi ≤ ν and that vertex j satisfies νj = ν + 1. Let P = (1 = x0, x1, . . . , xν+1 = j) be a shortest
path from 1 to j. Then, by induction, after ν rounds Pxν is a shortest path from 1 to xν and then after one
more round Pj is correct.

4.3 Digraphs without circuits

These are important, not least because they occur in Critical Path Analysis. Their application in this area
involves computing longest paths.

4.3.1 Topological Ordering

Let the vertices of a digraph D = ([n], E) be ordered v1, v2, . . . , vn. This ordering is topological if (vi, vj) ∈ E
implies that i < j.

Lemma 6. Digraph D has a topological ordering if and only if D has no directed circuits.

Proof. Suppose first that v1, v2, . . . , vn is a topological ordering and that D has a directed cycle vi1 , vi2 , . . . , vik .
then we have i1 < i2 < · · · < ik < i1, contradiction.

Conversely, suppose there are no directed circuits. Let P = (x1, x2, . . . , xk) be a longest path in D. Then xk
is a sink i.e. there are no directed edges (xk, y). (If y ∈ X = {x1, x2, . . . , xk−1} then D contains a circuit. If
y /∈ X then (P, x) is longer than P .)

22



To get a topological ordering, we let vn = xk and inductively order the subgraph H induced by [n] \ {vn}.
This is a topological ordering. If (vi, vj) ∈ E(H) then i < j because H is toplologically ordered. Any other
edge must be of the form (vi, vn).

To solve the longest path problem for paths starting at v1, we take a topological ordering and then compute
d(v1) = 0 and then for j ≥ 2,

d(vj) = max {d(vi) + ℓ(vi, vj) : i < j and (vi, vj) ∈ E} . (21)

Lemma 7. Equation (21) computes the value of a longest path from v1 to every other vertex.

Proof. That d(vj) is correct follows by induction on j. It is trivially true for j = 0 and then for j > 0 we use
the fact if P = (x1 = v1, x2, . . . , xk = vj) is a longest path from v1 to vj then (i) xk−1 = vl for some l < j and
(ii) (x1, x2, . . . , xk−1) is a longest path from v1 to vl and (iii) ℓ(P ) = d(vl) + ℓ(vl, vj).

Critical Path Analysis: Imagine that a project consists of n activites.

Making a cup of tea:

1. Get a cup from the cupboard.

2. Get a tea bag.

3. Fill the kettle with water.

4. Boil the water.

5. Pour water into cup.

6. Allow to brew.

We define a digraph with n vertices, one for each activity and an edge (i, j) if (i) activity j cannot start until
acivity i has been completed but (ii) only include (i, j) if it is not implied by a path (i, k, j). Each edge (i, j)
has a length equal to the estimated duration of the activity i.

Tea Digraph:

3

2

1 5

4

6 FINISH

Associate a time ti to start activity i. Then ti is the length of the longest path to vertex i. The estimated
completion time of the project is then the length of the longest path to FINISH.

23



5 Assignment Problem

A matching M in a graph is a set of vertex disjoint edges. A vertex v is covered by M if there exists e ∈ M
such that v ∈ e. A matching M is perfect if every vertex of G coverd by M . For the complete bipartite
graph KA,B on vertex set A = {ai : i ∈ [n]} , B = {bi : i ∈ [n]}, perfect matchings can be represented by
permutations of n i.e M =

{︁
(ai, bπ(i)) : i ∈ [n]

}︁
. Given a cost matrix (c(i, j), the cost of a perfect matching

M =M(π) be given by

c(M) =
n∑︂

i=1

c(i, π(i)).

The assignment problem is that of finding a perfect matching of minimum cost.

5.1 Alternating paths

Given a matching M , a path P = (e1, e2, . . . , ek) (as a sequence of edges) is alternating if the edges alternate
between being in M and not in M .

An alternating path is augmenting if it begins and ends at uncovered vertices. If P is augmenting with respect
to matching M , then M ′ =M ⊕ P is also a matching and |M ′| = |M |+ 1.

5.2 Successive shortest path algorithm

The algorithm produces a sequence M1,M2, . . . ,Mn where Mk is a minimum cost matching from [k] to [k].
It begins with M1 = (1, 1).

Suppose that k > 1 and that we have constructed Mk−1 =
{︁
(ai, bπ(i)) : i = 1, 2, . . . , k − 1

}︁
. The graph Γk is

the complete graph KAk,Bk
. The digraph Γ⃗k on vertex set Ak = {ai : i ∈ [k]}, Bk = {bi : i ∈ [k]} is defined

as follows. The directed edges are X =
{︁
(bπ(i), ai) : i ∈ [k − 1]

}︁
and Y = {(ai, bj) : i ∈ [k], j ∈ [k], j ̸= π(i)}.

The edge (bπ(i), ai) ∈ X is given length −c(i, π(i)) and the edge (i, j) ∈ Y is given length c(i, j).

We observe the following:

• If M is a perfect matching of Γk then M ⊕Mk−1 consists of a collection C1, . . . , Cp of vertex disjoint
alternating cycles plus an augmenting path from ak to bk.

•

c(M)− c(Mk−1) =

p∑︂
i=1

ℓ(Ci) + ℓ(P )

where length ℓ is defined with respect to Γ⃗k.

• ℓ(Ci) ≥ 0 for all i. Otherwise Mk−1 ⊕ Ci is a matching of Γk−1 with a cost c(Mk−1) + ℓ(Ci) < c(Mk−1).

It follows from the above that to find a minimum cost matching of Γk, we should find a shortest path in Γ⃗k

from ak to bk. Second, because Γ⃗k has no negative circuits, we can apply Ford’s algorithm to find this path.

24



5.3 Linear Programming Solution – Hungarian Algorithm

Consider the linear program ALP:

Minimize
∑︁n

i=1

∑︁n
j=1 ci,jxi,j (22)

Subject to ∑︁n
j=1 xi,j = 1 for i = 1, 2, . . . , n. (23)∑︁n
i=1 xi,j = 1 for j = 1, 2, . . . , n. (24)

xi,j ≥ 0 for i, j = 1, 2, . . . , n. (25)

The assignment problem is the solution to ALP where we replace (25) by

xi,j = 0 or 1 for i, j = 1, 2, . . . , n. (26)

This is because (23), (24) force the set {(i, j) : xi,j = 1} to be a perfect matching and (22) is then the cost of
this matching.

In general replacing non-negativity constraints (25) by integer contraints (26) makes an LP hard to solve.
Not however in this case.

The dual of ALP is the linear program DLP:

Maximize
∑︁n

i=1 ui +
∑︁n

j=1 vj (27)

Subject to

ui + vj ≤ c(i, j) for i, j = 1, 2, . . . , n. (28)

The primal-dual algorithm that we describe relies on complimentary slackness to find a solution.

Complimentary Slackness: If a feasible solution x to ALP and a feasible solution u,v, to DLP satisfy

xi,j > 0 implies that ui + vj = c(i, j). (29)

then x solves ALP and u,v, solves DLP. For then

0 =
n∑︂

i=1

n∑︂
j=1

(c(i, j)− ui − vj)xi,j =
n∑︂

i=1

n∑︂
j=1

ci,jxi,j −

(︄
n∑︂

i=1

ui +
n∑︂

j=1

vj

)︄
, (30)

and the two solutions have the same objective value.

(We have used
∑︁n

i=1 ui
∑︁n

j=1 xi,j =
∑︁n

i=1 ui, which follows from (23) etc.)

The steps of the Primal-Dual algorithm are as follows:

Step 1 Choose an initial dual feasible solution. E.g. vj = 0, j ∈ [n] and ui = minj c(i, j).

Step 2 Given a dual feasible solution, u,v, define the graph Ku,v to be the bipartite graph with vertex set
A,B and an edge (i, j) whenever ui + vj = c(i, j).

Step 3 Find a maximum size matching M in Ku,v.

Step 4 If M is perfect then (29) holds and M provides a solution to the assignment problem.

25



Step 5 If M is not perfect, update u,v and go to Step 3.

To carry out Step 3, we proceed as follows:

Step 3a Begin with an arbitrary matching M of Ku,v.

Step 3b Let AU denote the set of vertices in A not covered by M .

Step 3c Let K⃗u,v be the digraph obtained from Ku,v by orienting matching edges from B to A and other
edges from A to B.

Step 3d Let AM , BM denote the set of vertices in A,B that are reachable by a path in K⃗u,v from AU . Such
paths are necessarily alternating.

Step 3e If there is a vertex b ∈ BM that is not covered byM then there is an augmenting path P from some
a ∈ AU to v. In this case we use P to construct a matching M ′ with |M ′| > |M |. We then go to
Step 3b, with M replaced by M ′. Otherwise, Step 3 is finished.

To carry out Step 5, we assume that we have finished Step 3 with M,AM , BM . We then let

θ = min {ci,j − ui − vj : ai ∈ AM , bj /∈ BM} > 0.

We know that θ > 0. Otherwise, if ai, bj is the minimising pair, then we should have put bj ∈ BM .

We then amend u,v to u∗,v∗ via

u∗i =

{︄
ui + θ ai ∈ AM .

ui Otherwise.
and v∗j =

{︄
vj − θ j ∈ BM .

vj Otherwise.

Observe the following:

1. u∗,v∗ is feasible for DLP. u∗i + v∗j ≤ ui + vj except for the case where ai ∈ AM , bj /∈ BM and θ is chosen
so that the increase maintains feasiblity.

2. If b ∈ BM for the pair u,v then it will stay in BM when we replace u,v by u∗,v∗. This is because there
is a path P = (ai1 ∈ AU , bi1 , . . . , aik , bik = b) such that each edge of P contains one vertex in AM and
one vertex in BM . Hence the sum ui + vj is unchanged for edges along P .

3. A vertex b /∈ BM contained in a pair that defines θ will be in BM when we replace u,v by u∗,v∗.

In summary: if we reach Step 4 with a perfect matching then we have solved ALP. After at most n changes
of u,v in Step 5, the size of M increases by at least one. This is because updating u,v increases BM by at
least one. Thus the algorithm finishes in O(n4) time. (O(n3) time if done carefully.)

6 Matroids and the Greedy Algorithm

Given a ground set X, an independence system on X is collection of subsets I = {I1, I2, . . . , Im} such that

I ∈ I and J ⊆ I implies that J ∈ I. (31)

Examples

26



Ex. 1 The setM of matchings of a graph G = (V,X).

Ex. 2 The set of (edge-sets of) forests of a graph G = (V,X).

Ex. 3 The set of stable sets of a graph G = (X,E). We say that S is stable if it contains no edges.

Ex. 4 The set of solutions to the {0, 1}-knapsack problem. Here we are given positive integers w1, w2, . . . , wn,W
and X = [n] and I =

{︁
S ⊆ [n] :

∑︁
i∈S wi ≤ W

}︁
.

Ex. 5 Let c1, c2, . . . , cn be the columns of anm×nmatrixA. ThenX = [n] and I = {S ⊆ [n] : {ci, i ∈ S} are linearly independent}.

An independence system is a matroid if whenever I, J ∈ I with |J | = |I|+ 1 there exists e ∈ J \ I such that
I ∪ {e} ∈ I. Only Ex. 2 and 5 above are matroids. To check Ex. 5, let AI be the m × |I| sub-matrix of
A consisting of the columns in I. If there is no e ∈ J \ I such that I ∪ {e} ∈ I then AJ = AIM for some
|I| × |J | matrix. But then

|J | = rank(AJ) ≤ min {rank(AI), rank(M)} ≤ |I|,

contradiction.

To check Ex. 2 we can argue (exercise) that I ⊆ E defines a forest if and only if the columns corresponding
to I in the vertex-edge incidence matrix MG are linearly independent.
(MG has a row for each vertex of G and a column for each edge of G. The column ce, e = {x,y} has a one in
row x and a -1 in row y and a zero in all other rows. It doesn’t matter which of the two endpoints is viewed
as x.)

6.1 Greedy Algorithm

Suppose that each e ∈ E is given a weight we and that the weight w(I) of an independent set I is given by
w(I) =

∑︁
e∈I ce. The problem we discuss is

Maximize w(I) subject to I ∈ I.

Greedy Algorithm:
begin

Sort E = {e1, e2, . . . , em} so that w(ei) ≥ w(ei+1) for 1 ≤ i < m;
S ← ∅;
for i = 1, 2, . . . ,m;
begin

if S ∪ {ei} ∈ I then;
begin;

S ← S ∪ {ei};
end;

end;
end

Theorem 8. The greedy algorithm finds a maximum weight independent set for all choices of w if and only
if it is a matroid.

27



Proof. Suppose first that the Greedy Algorithm always finds a maximum weight independent set. Suppose
that ∅ ≠ I, J ∈ I with |J | = |I|+ 1. Define

w(e) =

⎧⎪⎨⎪⎩
1 + 1

2|I| e ∈ I.
1 e ∈ J \ I.
0 e /∈ I ∪ J.

If there does not exist e ∈ J \ I such that I ∪ {e} ∈ I then the Greedy Algorithm will choose the elements of
I and stop. But I does not have maximum weight. Its weight is |I|+ 1/2 < |J |. So if Greedy succeeds, then
(31) holds.

Conversely, suppose that our independence system is a matroid. We can assume that w(e) > 0 for all e ∈ E.
Otherwise we can restrict ourselves to the matroid defined by I ′ = {I ⊆ E+} where E+ = {e ∈ E : w(e) > 0}.

Suppose now that Greedy chooses IG = ei1 , ei2 , . . . , eik where it < it+1 for 1 ≤ t < k. Let I = ej1 , ej2 , . . . , ejℓ
be any other independent set and assume that jt < jt+1 for 1 ≤ t < ℓ. We can assume that ℓ ≥ k, for
otherwise we can add something from IG to I to give it larger weight. We show next that k = ℓ and that
it ≤ jt for 1 ≤ t ≤ k. This implies that w(IG) ≥ w(I).

Suppose then that there exists t such that it > jt and let t be as small as possible for this to be true. Now
consider I = {eis : s = 1, 2, . . . , t− 1} and J = {ejs : s = 1, 2, . . . , t}. Now there exists ejs ∈ J \ I such that
I ∪ {ejs} ∈ I. But js ≤ jt < it and Greedy should have chosen ejs before choosing eit+1 . Also, ik ≤ jk implies
that k = ℓ. Otherwise Greedy can find another element from I \ IG to add.

28



7 Two person zero-sum games

We discuss here an application of linear programming to the theory of games. This theory is an attempt to
provide an analysis of situations involving conflict and competition.

Game 1: There are two players A and B and to play the game they each choose a number 1,2,3 or 4 without
the other’s knowledge and then they both simultaneously announce their numbers. If A calls i and B calls
j then B pays A ai,j – the payoff – given in the matrix below. (if ai,j < 0, this is equivalent of A paying B
−ai,j.) ⎡⎢⎢⎣

2 4 2 1
−2 5 1 −1
1 −5 3 0
6 2 −3 −2

⎤⎥⎥⎦
This is a two person zero-sum game, zero sum because the algebraic sum of the player’s winnings is always
zero.

Game 2: (Penalty kicks) Suppose that A and B play the following game of soccer. A plays in goal and B
takes penalty kicks. B can kick the ball into the left hand corner, the right hand corner or into the midle.
If A guesses correctly where B will kick then A will make a save. The payoff to A is given by the following
matrix. ⎡⎢⎢⎣

KR KL KM
DR 2 −1 −2
DL −1 2 −2
M −1 −1 −1

⎤⎥⎥⎦
We will be considering m×n generalisations of Game 1 and other games like Game 2 that can be reduced to
this form.

Thus there is given some m × n payoff A. In a play of the game, A chooses i ∈ M − {1, 2, . . . ,m} and B
chooses j ∈ N = {1, 2, . . . , n}. These choices are made independently without either player knpowing what
the other has chosen. They then announce their choices and B pays ai,j to A.

M,N will be referred to as the sets of tactics for A,B respectively.

A match is an unending sequence of plays. A’s objective is to maximize her expected winnings from the
match and B’s objective is to minimize his expected loss.

A strategy for the match is some rule for selecting the tactic for the next play.

Let SA, SB be sets of strategies for A, B respectively. We shall initially consider the case where SA =
{(1), . . . , (m)} and SB = {(1), . . . , (n)} where (t) is the pure strategy of using tactic t in each play We Shall
subsequently be enlarging SA and SB and we therefore introduce new notation to allow for this possibility.

Thus for each u ∈ SA and v ∈ SB let PAY (u, v) denote the average payment of B to A.

Stable Solutions u0, v0) ∈ SA × SB is a stable solution if

PAY (u, v0) ≤ PAY (u0, v0) ≤ PAY (u0, v) (32)

holds for all u, v.

29



If (32) holds then neither A nor B has any incentive to change strategy if each assumes his opponent is not
going to change his or hers.

The subsequent analysis is concerned with finding a stable solution.

Thinking of SA as the row indiceses and SB as the column indices of some matrix we define

ROWMIN(u) = min
v∈SB

PAY (u, v), u ∈ SA.

COLMAX(v) = max
u∈SA

PAY (u, v), v ∈ SB.

Suppose now that A chooses u. We assume that after some finite time, B will be able to deduce this choice. B
will then choose his strategy v to minimize PAY (u, v). Thus if A chooses u then she can expect her average
winnings to be ROWMIN(u).

Similarly if B chooses v he can expect his average losses to be COLMAX(v).

Thus if PA = ROWMIN(u0) = maxu∈SA
ROWMIN(u) and PB = COLMAX(v0) = minv∈SB

COLMAX(v)
then A can by choosing u0 ensure that her average winnings are at least PA and B by choosing v0 can ensure
that his losses are at most PB. If PA = PB then this seems to solve the game but is PA = PB always?

Theorem 9.

(a) PA ≤ PB.

(b) SA × SB contains a stable solution iff PA = PB.

Proof. (a)
PA = ROWMIN(u0) ≤ PAY (u0, v0) ≤ COLMAX(v0) = PB. (33)

(b) Suppose first that (u0, v0) is stable. Then, from (32), we have

COLMAX(v0) = PAY (u0, v0) = ROWMIN(u0)

and hence
PB ≤ COLMAX(v0) = ROWMIN(u0) ≤ PA,

which from (a) implies that PA = PB.

Conversely, if PA = PB then from (33) we deduce that

ROWMIN(u0) = PAY (u0, v0) = COLMAX(v0)

which implies (32).

We now consider specifically the case SA = {(1), . . . , (m)} and SB = {(1), . . . , (n)}.

For Game one we have PA = PB = 1 = a1,4 and hence A plays 1 and B plays 4 solves the game and A can
guarantee to win at least 1 and B can guarantee to lose at most 1 on average.

The matrix of this game is said to have a saddle point (i0, j0) which means that (i0), (j0) satisfies (32).

30



For a game who’s matrix does not have a saddle point things are more complex. Consider for example Game
two. PA = −1 and PB = 1. It follows from Theorem 9 that no pair of pure strategies solves the game. A
knows she can average at least -1 by playing (3) and B knows he need lose no more than 1 on average by
playing (3) but note that if A plays (3) then B has an incentive to play (1) or (2) but if he plays (1) then A
will play (1) and so on.

Mixed strategies:
To break this seeming deadlock we allow the players to choose mixed strategies. A mixed strategy for A is a
vector of probabilities p = (p1, . . . , pm) where pi ≥ 0 for i ∈M and p1+ · · ·+ pm = 1. A then chooses tactic i
with probability pi for i ∈M i.e. before each play A carries out a statistical experiment that has an outcome
i ∈ M with probability pi. A then plays the corresponding tactic. Similarly B’s mixed strategies are vectors
q = (q1, . . . , qn) satisfying qj ≥ 0, j ∈ N and q1 + · · ·+ qn = 1.

Pure strategies can be represented as vectors with a single non-zero component equal to 1. We now enlarge
SA, SB to

SA = {p ∈ ℜm : p ≥ 0 and p1 + · · ·+ pm = 1} .
SB = {q ∈ ℜn : q ≥ 0 and q1 + · · ·+ qn = 1} .

(34)

We now show using the duality theory of linear programming that SA × SB as defined in (34) contains a
stable solution.

We shall first show how to compute PA. Let cj(p) =
∑︁

i∈M ai,jpi. Then

PA = max
p∈SA

(︄
min
q∈SB

n∑︂
j=1

cj(p)qj

)︄
(35)

Lemma 10.

min
q∈SB

n∑︂
j=1

ξjqj = min {ξ1, . . . , ξn} . (36)

Proof. Let ξt = min {ξ1, . . . , ξn} and let L be the LHS of (36). Putting ˆ︁qj = 0 for j ̸= t and ˆ︁qt = 1 we haveˆ︁q ∈ SB and
∑︁n

j=1 ξjˆ︁qj = ξt. Thus L ≤ ξt. However, for any q ∈ SB,

n∑︂
j=1

ξjqj ≥
n∑︂

j=1

ξtqj = ξt

n∑︂
j=1

qj = ξt.

31



It follows from the lemma and (35) that

PA = max
p∈SA

min {c1(p), . . . , cn(p)}

= maxmin {c1(p), . . . , cn(p)}
Subject to

p1 + · · ·+ pm = 1

p1, . . . , pm ≥ 0

= max ξ (37)

Subject to

ξ ≤
m∑︂
i=1

ai,jpi, j = 1, . . . , n

p1 + · · ·+ pm = 1

p1, . . . , pm ≥ 0

Using similar arguments we can show that

PB = max η (38)

Subject to

η ≥
n∑︂

j=1

ai,jqj, i = 1, . . . ,m

q1 + · · ·+ qn = 1

q1, . . . , qn ≥ 0

We note next that (37), (38) are a pair of dual linear programs. They are both feasible and hence PA = PB and
stable solutions exist. In fact if p0 solves (37) and q0 solves (38) (p0,q0) is stable as PAY (p0,q0) = PA = PB.

Random payoff: We note that the above analysis goes through unchanged if A, B having selected tactics
I, J , the payoff to A is a random variable who’s expected value is ai,j.

7.1 Dominance

If A(i, j) ≥ A(i, j′) for all i then player B will never use strategy j. It is preferable for her/him to use strategy
j′ instead. So, column j can be removed from the matrix A.

Similarly, if A(i, j) ≤ A(i′, j) for all j then player A will never use strategy i. It is preferable for her/him to
use strategy i′ instead. So, row i can be removed from the matrix A.

Repeated use of this idea can reduce a game substantially.

32



7.2 Latin Square Game

Suupose that every row sum is equal to R > 0 and every column sum is equal to C > 0 where mR = nC.
Then both players can choose uniformly. Consider the two LP’s that solve the game:

A Minimize
m∑︂
i=1

xi subject to
m∑︂
i=1

ai,jxi ≥ 1 for all j,
m∑︂
i=1

xi = 1. (39)

B Maximize
n∑︂

j=1

yj subject to
n∑︂

j=1

ai,jjj ≤ 1 for all i,
n∑︂

j=1

yj = 1. (40)

Putting xi = 1/C and yj = 1/R gives two feasible solutions with the same objective value.

7.3 Non-singular games

Suppose that A is non-singular and that 1TA−11 > 0. Then the value of the game is V = 1
1TA−11

. Then,

xT = 1TA−1

V
and y = A−11

V
solve (39), (40) respectively.

7.4 Symmetric games

A game is symmetric if AT = −A i.e if A is anti-symmetric. Then the game has value 0. If A and B both
use strategy p then because pTAp = 0 for ant-symmetric A, we see that PAY (p, p) = 0. This implies that
0 ≥ PA = PB ≥ 0.

33



8 Inventory Control

We discuss some simple models that attempt to control some of the costs of keeping inventory/stock. Our
analysis involves trying to answer the question (i) when to order goods and (ii) how much to order.

8.1 Model 1

The demand for the product is constant and λ per period there is a zero lead time and no stock outs are
allowed. At constant intervals of time T we make an order for Q items of stock. The problem is to choose T
and Q so as to minimize the average cost per period of running the system.

Notation

• A is the fixed cost associated with making an order.

• C is the unit cost per item.

• I is the inventory carrying charg. If one unit of stock is kept for t periods then the inventory charge is
It.

Let S be the stock level when each order arrives. The stock level will have a pattern as shown in the diagram
below:

Q

T

S

gradient is −λ

From the diagram we see that Q = λT and so only one of these variables can be chosen independently.
Ordering cost
The actual cost of the items bought or produced is λC per period on average regardless of the inventory
policy and will not be affect by the choice of Q. It is therefore ignored.

The average number of orders per period will be 1/T = λ/Q. Therefore the average fixed cost of making
orders is Aλ/Q.

Holding cost
The average stock level is (S + (S + Q))/2 = S + Q/2 and therefore the average holding cost per period is
I(S +Q/2.

34



Therefore the average total variable cost per period K is given by

K =
Aλ

Q
+ I

(︃
Q

2
+ S

)︃
. (41)

K is to be minimized for Q and S ≥ 0. Now for given Q we minimize K by taking S = 0. To find the optimal
Q we differentiate the right hand side of (41). Now

dK

dQ
= −Aλ

Q2
+
I

2
.

Putting dK
dQ

= 0 gives the optimal QW where

QW =

(︃
2λA

I

)︃1/2

. (42)

The RHS of (42) is sometimes referred to as the Wilson lot size formula. Using this we see that the optimal
time interval TW and the minimum cost KW are given by

TW =

(︃
2A

λI

)︃1/2

and KW = (2λAI)1/2.

Discrete case
Suppose that we can only order discrete quantities Q 2 Q Etc and that is not an exact multiple of Q in this
case we simply compare the cost for Q rounded up and Q rounded down and take the smaller

8.2 Model 2

This model is the same as for Model 1 except that items out of stock can be backordered and supplied when
goods come into stock. The cost of each item back ordered is πt where t is the length of time the demand
remains unfilled. The Infantry level will follow the pattern below:

Q

T

ST1

T2

gradient is −λ

s is the number of back orders when the order Q arrives. The objective is to choose Q and S so that the
average cost per period is minimized. The following relations are apparent from the diagram:

Q = λT, S = λT2, Q− S = λT1.

Ordering cost:
The number of orders per period is again 1/T = λ/Q and so the variable ordering cost is λA/Q.

35



Holding cost:
The proportion of time that there are goods in stock is T1/T . During this time the average infantry level is
(Q − Q)/2 and so the average holding cost per period is I(Q − S)T1/2T . But from the above we have that
T1/T = (Q− S)/Q and so this cost is in fact I(Q− S)2/2Q.

Backorder cost:
The proportion of time that the system is out of stock is T2/T . Because of the given form of backorder cost
we may work out the average back order cost in a similar way to that of the holding cost. During the time
the system is out of stock the average amount backordered is S/2. Therefore the average back order cost is
πST2/2t = πS2/2Q. Thus the total variable annual cost K is then

K =
λA

Q
+
I(Q− S)2

2Q
+
πS2

2Q
.

In order to minimize K we solve the equations ∂K
∂Q

= ∂K
∂S

= 0, yielding

− λA

Q2
− I(Q− S)2

2Q2
+
I(Q− S)

Q
− πS2

2Q2
= 0. (43)

− I(Q− S)
Q

+
πS

Q
= 0. (44)

These can be solved by using (44) to express Q in terms of S, substitute in (43) to give an equation in S and
then solving, giving

S =

(︃
2λAI

π(π + I)

)︃1/2

, Q = QW

(︃
π + I

π

)︃1/2

, K = KW

(︃
π

π + I

)︃1/2

.

Comparing with model 1 we see that the extra freedom of allowing back orders enables us to reduce the total
cost. We can obtain the results for Model 1 by putting π =∞.

8.3 Model 3:

In the previous models we assumed that the orders arrived instantaneously in a single lot size of Q units we
now consider a situation in which having made an order the items arrive in a continuous stream at a rate
ψ > λ per period. The entrance level assuming no back ordering will then have the pattern below during

gr
ad
ie
nt

is
ψ
−
λ gradient is −

λ

Q

T

Tp Td

h

36



During period Tp the stock level increases at a rate ψ − λ. During period Td the stock level decreases at a
rate λ. If the length of the time between orders is T and the total amount Q is produced at a time then we
must have Q = λT , otherwise stock levels will not be zero again at the end of each cycle.

Ordering cost:
The average number of orders per period is again 1/T = λ/Q and so the average ordering cost Aλ/Q.

Holding cost:
If h is the maximum stock level during a cycle then the average stock h/2. Now h is the amount of stock
built up during Tp and so h = (ψ − λ)Tp. We also have that Q = ψTp as the order is produced in time
Tp. Substituting in the above gives h = (1 − λ/ψ)Q. Therefore the average inventory cost per period is
I(1− λ/ψ)Q/2 total variable cost is

λA

Q
+
IQ(ψ − λ)

2ψQ
.

Solving the equation dK
dQ

= 0 gives the optimal batch quantity as

Q = QW

(︃
ψ

ψ − λ

)︃1/2

and K = KW

(︃
ψ − λ
ψ

)︃1/2

.

The total cost has decreased again as against Model 1 due to decreasing inventory costs. Note that taking
ψ =∞ gives Model 1 again.

8.4 Deterministic multi-item problems

We consider here some problems where more than one type of item is being stored and when the inventory
cost of the items interact. If there is no interaction we can consider each item separately.

Models 4 and 5 of this section are generalizations of Model 1 although we could equally well have generalized
Model 2 or Model 3.

8.5 Model 4

Assume there are n distinct types of item who’s individual characteristics are that of Model 1. When an
order is made it is possible to order more than one type of item but the fixed cost of ordering A is unaffected
by the number of different types of goods ordered. Supposedly then that there is a demand λj and holding
cost Ij for item j. Let the optimal policy be to all the item at period Tj.

37



T1

T2

We show that in an optimum scheule, T1 = T2 = · · · = Tn. For let T = Tk = minj Tj. Then if Tj > T for
some j then by increasing the frequency of ordering of item j to that of item k and ensuring that item J is
ordered at the same time as k we
(i) eliminate any extra ordering cost for j over those of k
, (ii) decrease the average stock level of j.

This implies non-optimality for the current schedule and the claim follows. The problem is then to find the
optimal value for T .

Ordering cost
The average number of all those per period is and so the average ordering cost per period is A/T .

Holding cost
Let Qj be the amount of item j ordered at a time. Then since orders are made at intervals of time T we must
have Qj = λjT . Now the average inventory for item j is Qj/2 and so the average inventory cost per period
for item j is IjQj/2. We see therefore that the average total invemtory cost is T

∑︁
j IjQj/2. So the average

total cost period is given by

K =
A

T
+ T

n∑︂
j=1

IjQj

2
. (45)

The optimal value of T is obtained by solving dK
dT

= 0 which gives

T =

(︄
2A∑︁n

j=1 λjTj

)︄1/2

.

The optimal lot sizes Qj = λjT and the minimal cost K as in (45) can now be calculated.

8.6 Model 5

In the previous model the items were able to share facility (ordering) without an increase in cost. Thus
the total cost was smaller than if all the items were ordered separately. In some situations items will make

38



conflicting demands on resources, for example if there is a shortage of storage space then calculating the
optimal lot size for each item separately may lead to too great a demand for storage space. We again to
assume there are n items whose individual characteristics are those of Model 1 but that the lots sizes QJ have
to satisfy the constraint

n∑︂
j=1

fjQj ≤ f. (46)

For given batch sizes Q1, . . . , Qn we may evaluate the average total cost by something individual costs as
calculated in Model 1. This gives

K =
n∑︂

j=1

λjAj

Qj

+
IjQj

2
. (47)

The problem is therefore to minimize K subject to (46) and we can proceed as follows:

(i) We first find the minimum of K ignoring constraint (47). Now to minimize K overall we can simply mini-
mize each term in the summation separately. This will naturally to the Wilson lot sizes QjW − (2λAj/Ij)

1/2,
j = 1, 2, . . . , n. Iif thse values satisfy the constraint then we have solved the problem.

(ii) Otherwise may assume that the constraint is active at the optimum Q∗ = (Q∗
1, . . . , Q

∗
n). This follows

because we may express

K(Q) = K(Q∗) +
n∑︂

j=1

∂K

∂Qj

(Qj −Q∗
j) + · · ·

and if
∑︁

j fjQ
∗
j < f then

(︂
Q∗

1 − θ ∂K
∂Q1

, . . . , Q∗
n − θ ∂K

∂Qn

)︂
is both feasible and better than Q∗ for small enough

θ > 0, unless ∂K
∂Qj

= 0 for j = 1, 2, . . . , n, which we have already ruled out.

So now we tackle the problem

Minimise K subject to F =
n∑︂

j=1

fjQj − f = 0. (48)

(We are lucky in that we can ignore the constraints Qj ≥ 0, j = 1, . . . , n.)

Problem (48) is in a form suitable for application of the classical Lagrange Multiplier method. This states
that there exists θ such that at the optimum to (48)

∂K

∂Qj

= θ
∂F

∂Qj

for j = 1, . . . , n. (49)

On differentiation we see that this states

−λjAj

Q2
j

+
Ij
2

= θfj for j = 1, . . . , n.

or

Qj =

(︃
2λjAj

Ij − 2θfj

)︃1/2

. (50)

The value for θ can be calculatd by solving

n∑︂
j=1

fj

(︃
2λjAj

Ij − 2θfj

)︃1/2

= f.

Given θ we use (50) to find the Qj’s.

39



9 Job Shop Scheduling

Jobs J1, J2, . . . , Jn have to be processed on machines M1,M2, . . . ,Mm in order to complete the production of
some item. We study a few associated optimisation problems. Here we will only have m = 1 or 2.

9.1 Single machine, minimise weighted completion time

Cj = completion time of job j.

pj = processing time of job j.

Objective: find the order (π) in which to do the jobs that minimises S = S(π) =
∑︁n

j=1wjCj.

Example: n = 4, p1 = 3, p2 = 2, p3 = 5, p4 = 6 and w1 = 1, w2 = 10, w3 = 3, w2 = 2.

S(1, 2, 3, 4) = 1× 3 + 10× 5 + 3× 10 + 2× 16 = 105.
S(2, 3, 1, 4) = 10× 2 + 3× 7 + 1× 10 + 2× 16 = 83.

In general the optimum order satisfies

wπ(1)

pπ(1)
≥
wπ(2)

pπ(2)
≥ · · · ≥

wπ(n)

pπ(n)
.

Suppose the processing order does not satisfy this: j is processed before k.

Old

j k

t

Here wj/pj < wk/pk. Now interchange j, k in the order. Only the completion times of j, k are affected.

Old
k j

t

Znew − Zold = wk(t+ pk) + wj(t+ pk + pj)− wj(t+ pj)− wk(t+ pk + pj) = wjpk − wkpj < 0.

9.2 Single machine, minimise maximum lateness

dj = due date for job j.

Lj = max {Cj − dj, 0} = (Cj − dj)+ = lateness of job j.

Lmax = max
j
Lj.

40



Objective: find the order (π) in which to do the jobs that minimises Lmax.

In general the optimum order satisfies d1 ≤ d2 ≤ · · · ≤ dn.

Suppose we do not use this order: Suppose the processing order does not satisfy this: j is processed before k.

Old

j k

t

Here dj > dk. Now interchange j, k in the order. Only the completion times of j, k are affected.

New
k j

t

Contribution of j, k to Lmax:

Old:max
{︁
(t+ pj − dj)+, (t+ pj + pk − dk)+

}︁
= (t+ pj + pk − dk)+.

New:max
{︁
(t+ pk − dk)+, (t+ pj + pk − dj)+

}︁
.

But clearly
max

{︁
(t+ pk − dk)+, (t+ pj + pk − dj)+

}︁
≤ (t+ pj + pk − dk)+.

9.3 Two machine flow shop: Johnson’s rule

Each job has to be processed first on machine M1 and then on machine M2. The goal is to minimise the
completion time of all the jobs. In principle the order of jobs on the two machines π1, π2 can be different.

9.3.1 π1 = π2: Permutation flow shop:

We first show that it is optimal to fix π1 = π2. By re-labelling if needed, we can assume that π1(i) = i for
i ∈ [n]. Now suppose there exists j < k such that π2(j) > π2(k). The diagram below refers to M2.

Old
k j

t: job j has completed on M1 by time t.

New

j k

.

Cmax is unchanged by this swap.

41



So, we will choose a single π for both machines.

9.3.2 Johnson’s Rule

Processing times: a1, . . . , an on M1.
b1, . . . , bn on M2.

Then we let A = {j : aj ≤ bj} and B = [n] \ A. Suppose that |A| = m. Renumber so that

bn ≤ bn−1 · · · ≤ bm+1

B

am ≥ am−1 · · · ≥ a1

→ → M2

JOHNSON’S RULE

For all permutation schedules there is a time t, after which there are no delays on machine M2.

k

k

time t

M1 ←

M2 ←
No delays No delays

Possible delays No more delays

It follows that

(i) Cmax is the sum of n+ 1 job processing times.

(ii) Reducing the processing time of each item by an amount ρ does not affect the optimal ordering. This
is because each ordering schedule is reduced by (n+ 1)ρ.

Now let ρ = ρ([n]) = min {a1, . . . , an, b1, . . . , bn}. There are two cases:
Case (a): ρ = aj for some j. Now let a′i = ai − ρ, b′i = bi − ρ for i = 1, . . . , n. Note that a′j = 0. We claim
that j can go first onto the machines.

42



M2 ←

M1 ←
j

jj

t

Moving job j to the front does not increase Cmax. To see this, first move j to be the first job on machine M1.
This has no affect on Cmax. Now the orders on the two machines are different and we use the argument of
Section 9.3.1 that moving job j closer to the beginning of the order will not increase Cmax.

Case (b): ρ = bj for some j. Now let a′i = ai − ρ, b′i = bi − ρ for i = 1, . . . , n. Note that b′j = 0. We claim
that j can go last onto the machines.

M2 ←

M1 ←
j

j j

t

Moving job j to the end does not increase Cmax. To see this, first move j to be the last job on machine
M2. This has no affect on Cmax. Now the orders on the two machines are different and we can modify the
argument of Section 9.3.1 that moving job j closer to the end of the order will not increase Cmax.

Let now S denote the jobs that have not been ordered. The general rule is

1. Suppose that the current state of the ordering is i1, . . . , it, S, j1, . . . , js where s+ t = n− |S|.

2. ρ = r(S) = min {mini∈S ai,mini∈S bi}.

3. If ρ = aj then job j is placed immediately after job it.

4. If ρ = bj then job j is placed immediately before job j1.

43



10 Decision Analysis

Company GFB owns a plot of land. It is considering drilling for oil.

Alternatives Oil Dry
Drill 700K -100K
Sell Land 90K 90K
Probability 0.25 0.75.

Decision strategies:

(i) Choose alternative that maximises minimum payoff: Sell Land.

(ii) Choose alternative that maximises minimum payoff under the most likely alternative: Sell land.

(iii) Choose alternative that maximises the expected payoff:
Drill: 0.25× 700− 0.75× 100 = 100∗.
Sell: 90.

Now introduce a third alternative: do a seismic study (SS) and then make a decision. The cost of the survey
is 30K.

Outcome: FSS=Favorable, USS=Unfavorable.
Data:

P(FSS | Oil) = 0.6 P(USS | Oil) = 0.4.

P(FSS | Dry) = 0.2 P(FSS | Oil) = 0.8.

Bayes computation. We need

P(Oil | FSS) = P(Oil ∧ FSS)
P(FSS)

=
P(FSS | Oil)P(Oil)

P(FSS | Oil)P(Oil) + P(FSS | Dry)P(Dry)

=
0.6× 0.25

0.6× 0.25 + 0.2× 0.75

=
1

2
.

Similar calculations give

P(Oil | FSS) = 1

2
, P(Dry | FSS) = 1

2
, P(Oil | USS) = 1

7
, P(Dry | USS) = 6

7
.

44



Decision tree.

Su
rv
ey

N
o
Survey

.

U
SS

FSS

Dr
ill

Sell

.

O
il(
1/
7)

Dry(6/7)

Payoff

Dr
ill

.

Sell

Oil(
1/2

)

Dry(1/2)

D
ril
l

Sell

.

Oil
(1/

4)

Dry(3/4)

670

-130

60

670

-130

60

700

-100

90

Decision node

Chance node .

45



Evaluating nodes of tree. A,B are the expected values at these nodes.

Chance node:

.

p

1−
p

A

B

pA+ (1− p)B

Decision node.

A

B

max {A,B}

46



Su
rv
ey

N
o
Survey

.

U
SS
(0
.7
)

FSS(0.3)

Dr
ill

Sell

.

O
il(
1/
7)

Dry(6/7)

Payoff

Dr
ill

.

Sell

Oil(
1/2

)

Dry(1/2)

D
ril
l

Sell

.

Oil
(1/

4)

Dry(3/4)

670

-130

60

670

-130

60

700

-100

90

-110/7

6060

270

270123

270 100

100

47



11 Approximation algorithms

If solving an optimization problem is considered to be hard, then we can sometimes efficiently find approximate
solutions with guarantees how far from optimum they are. An α-approximation algorithm for a minimisation
problem computes a solution whose value is at most αv∗, where v∗ is the minimum value for the problem.
(For maximisation we have at least αv∗.)

11.1 Traveling Salesperson Problem – TSP

11.1.1 Unrestricted

There is no polynomial time M -approximation algorithm unless P=NP. Given a graph G, give a cost of 1 to
each edge of G and Mn + 1 to each non-edge. Then, the TSP has a tour of length n iff G is Hamiltonian.
Otherwise the cost of the tour is at least (M + 1)n. An M -approximation algorithm could tell if G is
Hamiltonian. If G is Hamiltonian, it produces a tour of length at most Mn < (M + 1)n, implying that G is
Hamiltonian. Otherwise it produces a tour of length at least (M + 1)n, implying that the minimum length
tour is greater than n, so G is not Hamiltonian.

11.1.2 Triangle Inequality

We assume next that the costs C(i, j), 1 ≤ i, j ≤ n satisfy the triangular inequality i.e. C(i, j) + C(J, k) ≥
C(i, k).

Tree heuristic

Step 1 Find a minimum cost spanning tree T .

Step 2 Double the edges of T to make an Eulerian multigraph K. (Eulerian because all degrees are even.
Such a graph contains a closed walk that goes through each edge exactly once.)

Step 3 Construct an Euler tour i1, i2, . . . , i2n−2 through the edges of K.

Step 4 Shortcut the Euler tour until it is a Hamilton cycle H. I.e. go through the vertices i1, i2, . . . , in
sequence and skip over any vertex that has already been visited.

Theorem 11. The tour H found by the tree heuristic satisfies C(H) ≤ 2C∗, where C∗ is the minimum cost
of a tour.

Proof. We observe that
C(H) ≤ C(K) ≤ 2C(T ) ≤ 2C∗.

For C(H) ≤ C(K) we use the triangle inequality repeatedly to argue that C(j1, j2) + C(jj, j3) + · · · +
C(jk−1, jk) ≥ C(j1, jk). The other inequalities are obvious.

48



Christofides’ heuristic A simple idea reduces the 2 to 3/2.

Step 1 Find a minimum cost spanning tree T .

Step 2 Let O be the set of vertices of T of odd degree. |O| is even.

Step 3 Find a minimum cost matching M that covers O.

Step 4 Let K =M + T . K is Eulerian.

Step 5 Construct an Euler tour i1, i2, . . . , i2n−2 through the edges of K.

Step 6 Shortcut the Euler tour until it is a Hamilton cycle H.

Theorem 12. The tour H found by the Christofides’ heuristic satisfies C(H) ≤ 3C∗/2.

Proof. This follows from the fact that C(M) ≤ C∗/2. Start with the optimal tour. Shortcut the vertices that
are not in O. What is left has cost at most C∗ and is the union of two disjoint matchings. Each of them have
cost at least that of M .

11.2 Knapsack problem

We consider the problem

Maximize
n∑︂

i=1

pixi

Subject to
n∑︂

i=1

aixi ≤ B

xi = 0/1, i = 1, 2, . . . , n

We will assume that p1/a1 ≥ p2/a2 ≥ · · · ≥ pn/an.

11.2.1 Greedy Algorithm

Find i such that a1 + a2 + · · ·+ ai−1 ≤ B < a1 + a2 + · · ·+ ai. Then choose the better of {1, 2, . . . , i− 1} and
{i}. (We associate the set {j : xj = 1} with a solution.)

Let S = a1 + a2 + · · ·+ ai−1 and T = p1 + p2 + · · ·+ pi−1. We have the maximum value

OPT ≤ T +
B − S
ai

pi.

The RHS is the optimal value allowing fractional values for the xj. So, either

T ≥ OPT

2
or pi ≥

B − S
ai

pi ≥
OPT

2
.

49



11.2.2 Profit rounding algorithm

Let ˆ︁pi = ⌊Npi/pmax⌋ for i = 1, 2, . . . , n. Here pmax = maxi∈[n] pi and N = ⌈n/ε⌉. We solve the knapsack
problem with profits ˆ︁pi. Because the profits are “small” (≤ N), we can solve the new problem in polynomial
time via Dynamic programming.

Theorem 13. The solution produced in this way has value at least (1− ε)OPT .

Proof. We first discuss the solution of the knapsack problem. Let

gr(p) =minimum a1x1 + . . .+ arxr (51)

Subject to ˆ︁p1x1 + · · ·+ ˆ︁prxr ≥ p

xi = 0/1 for i ∈ [r].

Note that

gr(p) = min

{︄
gr−1(p) xr = 0.

ar + gr(p− ˆ︁pr) xr ≥ 1.
(52)

We evaluate (52) for p = 0, 1, . . . , Nn and r = 1, 2, . . . , n. This takes O(N2) = O(n3/ε) time.

If we know gn(p), 0 ≤ p ≤ Nn, then

OPT = gn(p
∗) where gn(p

∗) ≤ B and gn(p
∗ + 1) > B.

We now verify the quality of the solution. Let ˆ︁S define the solution to (51) and let S∗ define the solution to
the actual knapsack problem. Then ∑︂

i∈ˆ︁S
ˆ︁pi ≥∑︂

i∈S∗

ˆ︁pi.
Therefore ∑︂

i∈ˆ︁S
pi ≥

∑︂
i∈ˆ︁S
⌊︃
piN

pmax

⌋︃
pmax

N
=
pmax

N

∑︂
i∈ˆ︁S
ˆ︁pi ≥ pmax

N

∑︂
i∈S∗

ˆ︁pi. (53)

But,

pmax

N

∑︂
i∈S∗

⌊Npi/pmax⌋ ≥
pmax

N

∑︂
i∈S∗

(︃
piN

pmax

− 1

)︃
≥
∑︂
i∈S∗

pi −
npmax

N
≥∑︂

i∈S∗

pi − εpmax ≥
∑︂
i∈S∗

pi − εOPT = (1− ε)OPT.

11.3 Submodular functions

A function f : 2X → R is submodular if for every A,B ⊆ X,

f(A ∩B) + f(A ∪B) ≤ f(A) + f(B). (54)

Note that if f, g satisfy (54), then so does f + g.

50



Example: Simple plant location problem Here f refers to profit:

f(S) = −
∑︂
i∈S

fi +
n∑︂

j=1

max {pi,j : i ∈ S} .

The constant function is clearly submodular and this deals with
∑︁

i fi. Then we observe that for reals
x1, x2, . . . , xn,

max {xi : i ∈ A ∩B}+max {xi : i ∈ A ∪B} ≤ max {xi : i ∈ A}+max {xi : i ∈ B} .

(Assume that the largest xi is for i ∈ A. Then, max {xi : i ∈ A ∪B} = max {xi : i ∈ A} and
max {xi : i ∈ A ∩B} ≤ max {xi : i ∈ B}.)

f is monotone increasing if
f(B) ≥ f(A) whenever B ⊇ A.

Greedy Algorithm:
Step 0: S0 = ∅.
Step i: Si = Si−1 ∪ {xi} where xi /∈ Si−1 maximises f(Si−1 ∪ {x}).
Theorem 14. If f is monotone increasing and submdular and if f(∅) = 0 then after k steps of Greedy

f(Sk) ≥ (1− e−1)f(S∗
k),

where S∗
k maximises f over sets of size k.

Proof. Let ∆(v | T ) = f(T ∪ {v})− f(v). If S ⊇ T and v /∈ S then

f(S ∪ {v}) + f(T ) ≤ f(T ∪ {v}) + f(S) (A = T ∪ {v} , B = S),

which implies that
∆(v | S) ≤ ∆(v | T ). (55)

(The larger the set, the smaller the gain from v.)

Note that (55) is still true if v ∈ S, from monotonicity. Let S∗
k = {v∗1, . . . , v∗k}.

f(S∗
k) ≤ f(S∗

k ∪ Si)

= f(Si) +
k∑︂

j=1

∆(v∗j | Si ∪
{︁
v∗1, . . . , v

∗
j−1

}︁
≤ f(Si) +

k∑︂
j=1

∆(v∗j | Si)

≤ f(Si) +
k∑︂

j=1

(f(Si+1)− f(Si))

= f(Si) + k(f(Si+1)− f(Si)).

We re-write the last line as

f(S∗
k)− f(Si+1) ≤

(︃
1− 1

k

)︃
(f(S∗

k)− f(Si)).

This implies that

f(S∗
k)− f(Sk) ≤

(︃
1− 1

k

)︃k

(f(S∗
k)− f(∅)) ≤ e−1f(S∗

k).

51



11.4 Local Search

This is a general approach to solving hard problems in Combinatorial Optimisation. Suppose that the problem
is to

Maximise f(x) Subject to x ∈ X. (56)

One proceeds as follows: for each x ∈ X we define a neighborhood Nx ⊆ X containing x. It is defined so
that finding max {f(y) : y ∈ Nx} can be done efficiently. We can then find a good (not necesarily optimal
solution as follows: let x0 ∈ X be chosen in some way. Then define the sequence x0,x1, . . . ,xm where xi

maximises f(y) : y ∈ Nxi−1
. The value m will the smallest i such that xi = xi−1.

11.4.1 MaxCut

We are given a connected graph G = (V,E) and a function w : E → Z+. We let X = 2V and f(S) = w(S, S̄)
i.e. f(S) is the weight of the cut S : S̄. We then let NS = {T : |T \ S|+ |S \ T | = 1}. Let W =

∑︁
e∈E w(e).

Theorem 15. Local search finds a solution ˆ︁S such that f(ˆ︁S) ≥ OPT/2. It requires at most W iterations.

Proof.

f(ˆ︁S) ≥ f(ˆ︁S ∪ {v}) for v /∈ ˆ︁S implies that w(v, ˆ︁S) ≥ w(v, ˆ︁S¯).
f(ˆ︁S) ≥ f(ˆ︁S \ {v}) for v ∈ ˆ︁S implies that w(v, ˆ︁S¯) ≥ w(v, ˆ︁S).

So,

4f(ˆ︁S) = 2
∑︂
v∈ˆ︁S

w(v, ˆ︁S¯) + 2
∑︂
v/∈ˆ︁S

w(v, ˆ︁S)
≥
∑︂
v∈ˆ︁S

w(v, ˆ︁S¯) +∑︂
v/∈ˆ︁S

w(v, ˆ︁S) +∑︂
v∈ˆ︁S

w(v, ˆ︁S) +∑︂
v/∈ˆ︁S

w(v, ˆ︁S¯)
= 2W ≥ 2OPT.

The bound W on the number of iterations might be excessive. We can reduce this to a polynomial at
a small degradation in performance. Let wmax = max {w(e) : e ∈ E} and N = |E|wmax/(εW ). Then let
w∗(e) = ⌈Nw(e)/wmax⌉ for e ∈ E and W ∗ =

∑︁
e∈E w

∗(e).

Suppose we run the above algorithm, using w∗ in place of w. Then we have∑︂
e∈ˆ︁S

Nw(e)

wmax

+ |E| ≥ W ∗

2
≥ NW

2wmax

.

So,

w(ˆ︁S) ≥ W

2
− wmax|E|

N
≥ W

(︃
1

2
− ε
)︃
.

The running time is at most nW ∗ ≤ 2n|E|/ε.

52



12 Optimization Problems

We consider the following problem:

Minimize f(x) subject to x ∈ S, (57)

where x = (x1, x2, . . . , xn) and S ⊆ ℜn.

Example: f(x) = cTx and S = {x ∈ ℜn : Ax = b,x ≥ 0} – Linear Programming.

Local versus Global Optima: x∗ is a global minimum if it is an actual minimizer in (57).

x∗ is a local minimum if there exists δ > 0 such that f(x∗) ≤ f(x) for all x ∈ B(x∗) ∩ S, where B(x, δ) =
{y : |y − x| ≤ δ} is the ball of radius δ, centred at x.

See Diagram 1 at the end of these notes.

If S = ∅ then we say that the problem is unconstrained, otherwise it is constrained.

13 Convex sets and functions

13.1 Convex Functions

A function f : Rn → R is said to be convex if

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y).

See Diagram 2 at the end of these notes.

Examples of convex functions:

F1 A linear function f(x) = aTx is convex.

F2 If n = 1 then f is convex iff
f(y) ≥ f(x) + f ′(x)(y − x) for all x, y. (58)

Proof. Suppose first that f is convex. Then for 0 < λ ≤ 1,

f(x+ λ(y − x)) ≤ (1− λ)f(x) + λf(y).

Thus, putting h = λ(y − x) we have

f(y) ≥ f(x) +
f((x+ h)− f(x))

h
(y − x).

Taking the limit as λ→ 0 implies (58).

Now suppose that (58) holds. Choose x ̸= y and 0 ≤ λ ≤ 1 and let z = λx+ (1− λ)y. Then we have

f(x) ≥ f(z) + f ′(z)(x− z) and f(y) ≥ f(z) + f ′(z)(y − z).

Multiplying the first inequality by λ and the second by 1− λ and adding proves that

λf(x) + (1− λ)f(y) ≥ f(z).

53



F3 If n ≥ 1 then f is convex iff f(y) ≥ f(x) + (∇f(x))T(y − x) for all x,y.
Apply F2 to the function h(t) = f(tx+ (1− t)y).

F4 A n = 1 and f is twice differentiable then f is convex iff f ′′(z) ≥ 0 for all z ∈ R.

Proof. Taylor’s theorem implies that

f(y) = f(x) + f ′(x)(y − x) + 1

2
f ′′(z)(y − x)2 where z ∈ [x, y].

We now just apply (58).

F5 It follows from F4 that eax is convex for any a ∈ R.

F6 xa is convex on R+ for a ≥ 1 or a ≤ 0. xa is concave for 0 ≤ a ≤ 1.
Here f is concave iff −f is convex.

F7 Suppose that A is a symmetric n× n positive semi-definite matrix. Then Q(x) = xTAx is convex.
By positive semi-definite we mean that Q(x) ≥ 0 for all x ∈ Rn.
We have

Q(λx+ (1− λ)y)− λQ(x)− (1− λ)Q(y) (59)

=λ2Q(x) + (1− λ)2Q(y) + 2λ(1− λ)xTAy − λQ(x)− (1− λ)Q(y) (60)

=− λ(1− λ)Q(y − x) ≤ 0. (61)

F8 If n ≥ 1 then f is convex iff ∇2F =
[︂

∂f2

dxidxj

]︂
is positive semi-definite for all x.

Apply F7 to the function h(t) = f(x+ td) for all x,d ∈ Rn.

Operations on convex functions

E1 If f, g are convex, then f + g is convex.

E2 If λ > 0 and f is convex, then λf is convex.

E3 If f, g are convex then h = max {f, g} is convex.

Proof.

h(λx+ (1− λ)y) = max {f(λx+ (1− λ)y),g(λx+ (1− λ)y)} (62)

≤ max {λf(x) + (1− λ)f(y), λg(x) + (1− λ)g(y)} (63)

≤ λmax {f(x), g(x)}+ (1− λ)max {f(y),g(y)} (64)

= λh(x) + (1− λ)h(y). (65)

Jensen’s Inequality
If f is convex and ai ∈ Rn, λi ∈ R+, 1 ≤ i ≤ m and λ1 + λ2 + · · ·+ λm = 1 then

f

(︄
m∑︂
i=1

λiai

)︄
≤

m∑︂
i=1

f(λiai).

54



The proof is by induction on m. m = 2 is from the definition of convexity and then we use

m∑︂
i=1

λiai = λmam + (1− λm)
m−1∑︂
i=1

λi
1− λm

ai.

Application: Arithmetic versus geometric mean.
Suppose that a1, a2, . . . , am ∈ R+. Then

a1 + a2 + · · ·+ am
m

≥ (a1a2 · · · am)1/m. (66)

− log(x) is a convex function for x ≥ 0. So, applying (66),

− log

(︄
m∑︂
i=1

λiai

)︄
≤

m∑︂
i=1

− log(λiai).

Now let λi = 1/m for i = 1, 2, . . . ,m.

13.2 Convex Sets

A set S ⊆ Rn is said to be convex if x,y ∈ S then the line segment

L(x,y) = {λx+ (1− λ)y ∈ S : 0 ≤ λ ≤ 1} .

See Diagram 3 at the end of these notes.

Examples of convex sets:

C1 S =
{︁
x : aTx = 1

}︁
. x,y ∈ S implies that

aT (λx+ (1− λ)y) = λaTx+ (1− λ)aTy = λ+ (1− λ) = 1.

C2 S =
{︁
x : aTx ≤ 1

}︁
. Proof similar to C1.

C3 S = B(0, δ): x,y ∈ S implies that

|λx+ (1− λ)y| ≤ |λx|+ |(1− λ)y| ≤ λδ + (1− λ)δ = δ.

C4 If f is convex, then the level set {x : f(x) ≤ 0} is convex.
f(x), f(y) ≤ 0 implies that f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) ≤ 0.

Operations on convex sets:

O1 S convex and x ∈ Rn implies that x+ S = {x+ y : y ∈ S} is convex.

O2 S, T convex implies that A = S ∩ T is convex. x,y ∈ A implies that x,y ∈ S and so L = L(x,y) ⊆ S.
Similarly, L ⊆ T and so L ⊆ S ∩ T .

O3 Using induction we see that if Si, 1 ≤ i ≤ k are convex then so is
⋂︁k

i=1 Si.

55



O4 If S, T are convex sets and α, β ∈ R then αS + βT = {αx+ βy} is convex.
If zi = αxi + βyi ∈ T, i = 1,2 then

λz1 + (1− λ)z2 = α(λx1 + (1− λ)x2) + β(λy1 + (1− λ)y2) ∈ T.

It follows from C1,C2 and O3 that an affine subspace {x : Ax = b} and a halfspace {x : Ax ≤ b} are convex
for any matrix A any vector b.

We now prove something that implies the importance of the above notions. Most optimization algorithms
can only find local minima. We do however have the following theorem:

Theorem 16. Let f, S both be convex in (57). Then if x∗ is a local minimum, it also a global minimum.

Proof.
See Diagram 4 at the end of these notes.

Let δ be such that x∗ minimises f in B(x∗, δ)∩ S and suppose that x ∈ S \B(x∗, δ). Let z = λx∗ + (1− λ)y
be the point on L(x∗,y) at distance δ from x∗. Note that x ∈ S by convexity of S. Then by the convexity
of f we have

f(x∗) ≤ f(x) ≤ λf(x∗) + (1− λ)f(x)
and this implies that f(x∗) ≤ f(x).

The following shows the relationship between convex sets and functions.

Lemma 17. let f1, f2, . . . , fm be convex functions on Rn. Let b ∈ Rm and let

S = {x ∈ Rn : fi(x) ≤ bi, i = 1, 2, . . . ,m} .

Then S is convex.

Proof. It follows from O3 that we can consider the case m = 1 only and drop the subscript. Suppose now
that x,y ∈ S i.e. f(x), f(y) ≤ b. Then for 0 ≤ λ ≤ 1

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) ≤ λb+ (1− λ)b = b.

So, λx+ (1− λ)y ∈ S.

14 Algorithms

14.1 Line search – n = 1

Here we consider the simpler problem of minimising a convex (more generally unimodal) function f : R→ R.

See Diagram 5 at the end of these notes.

We assume that we are given a0, a1 such that a0 ≤ x∗ ≤ a1 where x∗ minimises f . This is not a significant
assumption. We can start with a0 = 0 and then consider the sequences ζi = f(2i), ξi = f(−2i) until we find
ζi−1 ≤ min {ζ0, ζi} (resp. ξi−1 ≤ min {ξ0, ξi}). Then we know that x∗ ∈ [ζ0, ζi] (resp. x

∗ ∈ [ξ0, ξi]).

56



Assume then that we have an interval [a0, a1] of uncertainty for x∗. Furthermore, we will have evaluated f at
two points in this interval, two points inside the interval at a2 = a0 + α2(a1 − a0) and a3 = a0 + α(a1 − a0)
respectively. We will determine α shortly. And at each iteration we make one new function evaluation and
decrease the interval of uncertainty by a factor α. There are two possibilities:

(i) f(a2) ≤ f(a3). This implies that x∗ ∈ [a0, a3]. So, we evaluate f(a0+α
2(a3−a0)) and make the changes

ai → a′i:
a′0 ← a0, a

′
1 ← a3, a

′
2 ← a0 + α2(a3 − a0), a′3 ← a2.

(ii) f(a2) > f(a3). This implies that x∗ ∈ [a2, a1]. So, we evaluate f(a0+) and make the changes ai → a′i:

a′0 ← a2, a
′
1 ← a1, a

′
2 ← a3, a

′
3 ← a2 + α2(a1 − a0).

In case (i) we see that a′1− a′0 = a3− a0 = α(a1− a0) and so the interval has shrunk by the required amount.
Next we see that a′2−a′0 = α2(a3−a0) = α2(a′1−a0). Furthermore, a′3−a′0 = a2−a0 = α2(a1−a0) = α(a′1−a′0).

In case (ii) we see that a′1 − a′0 = a1 − a2 = a1 − (a0 + α2(a1 − a0)) = (1 − α2)(a1 − a0). So, shrink by α in
this case we choose α to satisfy 1− α2 = α. This gives us

α =

√
5− 1

2
– the golden ratio.

Next we see that a′2 − a′0 = a3 − a2 = (α − α2)(a1 − a0) = α−α2

α
(a′1 − a′0) = (1 − α)(a′1 − a′0) = α2(a′1 − a′0).

Finally, we have a′3 − a′0 = a2 + α2(a1 − a0)− a2 = α2(a1 − a0) = α(a′1 − a′0).

Thus to achieve an accuracy within δ of x∗ we need to take t steps, where αtD ≤ δ where D is our initial
uncertainty.

14.2 Gradient Descent

See Diagram 6 at the end of these notes.

Here we consider the unconstrained problem. At a point x ∈ Rn, if we move a small distance h in direction
d then we have

f(x+ hd/|d|) = f(x) + h(∇f)T d

|d|
+O(h2) ≥ f(x)− h|∇f |+O(h2).

Thus, at least infinitessimally, the best direction is −∇f . So, for us, the steepest algorithm will follow a
sequence of points x0,x1, . . . ,xk, . . ., where

xk+1 = xk − αk∇f(xk).

Then we have

|xk+1 − x∗|2 = |xk − x∗|2 − 2αk∇f(xk)
T (xk − x∗) + α2

k|∇f(xk)
2| (67)

≤ |xk − x∗|2 − 2αk(f(xk)− f(x∗)) + α2
k|∇f(xk)|2. (68)

The inequality comes from F3.

57



Applying (68) repeatedly we get

|xk − x∗|2 ≤ |x0 − x∗|2 − 2
k∑︂

i=1

αi(f(xi)− f(x∗)) +
K∑︂
i=1

α2
i |∇f(xk)|2. (69)

Putting R = |x0 − x∗|, we see from (69) that

2
k∑︂

i=1

αi(f(xi)− f(x∗)) ≤ R2 +
K∑︂
i=1

α2
i |∇f(xk)|2. (70)

On the other hand,

k∑︂
i=1

αi(f(xi)− f(x∗)) ≥

(︄
k∑︂

i=1

αi

)︄
min {f(xk)− f(x∗) : i ∈ [k]} =

(︄
k∑︂

i=1

αi

)︄
(f(xmin − f(x∗)), (71)

where f(xmin) = min {f(xi) : i ∈ [k]}.

Combining (70) and (71) we get

f(xmin)− f(x∗) ≤ R2 +G2
∑︁k

i=1 α
2
i

2
∑︁k

i=1 αi

, (72)

where G = max {|∇f(xi)| : i ∈ [κ]}.

So, if we choose αk so that
∑︁∞

i=1 αi =∞ and
∑︁∞

i=1 α
2
i = O(1) then

|f(xmin)− f(x∗)| → 0 as k →∞. (73)

As an example, we could let αi = 1/i.

15 Separating Hyperplane

See Diagram 7 at the end of these notes.

Theorem 18. Let C be a convex set in Rn and suppose x /∈ C. Then there exists 0 ̸= a ∈ Rn and b ∈ R
such that (i) aTx ≥ b and (ii) C ⊆

{︁
y ∈ Rn : aTy ≤ b

}︁
.

Proof.
Case 1: C is closed.
Let z be the closest point in C to x. Let a = x− z ̸= 0 and b = (x− z)Tz. Then

aTx− b = (x− z)Tx− (x− z)Tz = |x− z|2 > 0.

This verifies (i). Suppose (ii) fails and there exists y ∈ C such that aTy > b. Let w ∈ C be the closest point
to x on the line segment L(y, z) ⊆ C. The triangle formed by x,w, z has a right angle at w and an acute
angle at z. This implies that |x−w| < |x− z|, a contradiction.

Case 2: x /∈ C̄.
We observe that C̄ ⊇ C and is convex (exercise). We can thus apply Case 1, with C̄ replacing C.

58



Case 3: x ∈ C̄ \C. Every ball B(x, δ) contains a point of Rn \ C̄ that is distinct from x. Choose a sequence
xn, /∈ C̄, n ≥ 1 that tends to x. For each xn, let an, bn = aT

nzn define a hyperplane that separates xn from
C̄, as in Case 2. We can assume that |an| = 1 (scaling) and that bn is in some bounded set and so there
must be a convergent subsequence of (an, bn), n ≥ 1 that converges to (a, b), |a| = 1. Assume that we re-label
so that this subsequence is (an), n ≥ 1. Then for y ∈ C̄ we have aT

ny ≤ bn for all n. Taking limits we see
that aTy ≤ b. Furthermore, for y /∈ C̄ we see that for large enough n, aT

ny > bn. taking limits we see that
aTy ≤ b.

Corollary 19. Suppose that S, T ⊆ Rn are convex and that S ∩ T = ∅. Then there exists a, b such that
aTx ≤ b for all x ∈ S and aTx ≥ b for all x ∈ T .

Proof. Let W = S + (−1)T . Then 0 /∈ W and applying Theorem 18 we see that there exists a such that
aTz ≤ 0 for all z ∈ W . Now put

b =
1

2

(︃
sup
x∈S

aTx+ inf
x∈T

aTx

)︃
.

Corollary 20 (Farkas Lemma). For an m× n matrix and b ∈ Rm, exactly one of the following holds:

(i) There exists x ∈ Rn such that x ≥ 0, Ax = b.

(ii) There exists u ∈ Rm such that uTA ≥ 0 and uTb < 0.

Proof. We cannot have both (i), (ii) holding. For then we have

0 ≤ uTAx = uTb < 0.

Suppose then that (i) fails to hold. Let S = {y : y = Ax for some x ≥ 0}. Then b /∈ S and since S is closed
there exists α, β such that (a) αTb ≤ β and (b) αTAx ≥ β for all x ≥ 0. This implies that αT (b−Ax) ≤ 0
for all x ≥ 0. This then implies that u = α satisfies (ii).

15.1 Convex Hulls

See Diagram 8 at the end of these notes.

Given a set S ⊆ Rn, we let

conv(S) =

{︄∑︂
i∈I

λixi : (i) |I| <∞, (ii)
∑︂
i∈I

λi = 1, (iii) λi > 0, i ∈ I, (iv) xi ∈ S, i ∈ I

}︄
.

Clearly S ⊆ conv(S), since we can take |I| = 1.

Lemma 21. conv(S) is a convex set.

Proof. Let x =
∑︁

i∈I λixi,y =
∑︁

j∈J µjyj ∈ conv(S). Let K = I ∪ J and put λi = 0, i ∈ J \ I and
µj = 0, j ∈ I \ J . Then for 0 ≤ α ≤ 1 we see that

αx+ (1− α)y =
∑︂
i∈K

(αλ1 + (1− α)µi)xi and
∑︂
i∈K

(αλ1 + (1− α)µi) = 1

implying that αx+ (1− α)y ∈ conv(S) i.e. conv(S) is convex.

59



Lemma 22. If S is convex, then S = conv(S).

Proof. Exercise.

Corollary 23. conv(conv(S)) = conv(S) for all S ⊆ Rn.

Proof. Exercise.

15.1.1 Extreme Points

A point x of a convex set S is said to be an extreme point if THERE DO NOT EXIST y, z ∈ S such that
x ∈ L(y, z). We let ext(S) denote the set of extreme points of S.

EX1 If n = 1 and S = [a, b] then ext(S) = {a, b}.

EX2 If S = B(0, 1) then ext(S) = {x : |x| = 1}.

EX3 If S = {x : Ax = b} is the set of solutions to a set of linear equations, then ext(S) = ∅.

Theorem 24. Let S be a closed, bounded convex set. Then S = conv(ext(S)).

Proof. We prove this by induction on the dimension n. For n = 1 the result is trivial, since then S must be
an interval [a, b].

Inductively assume the result for dimensions less than n. Clearly, S ⊇ T = conv(ext(S)) and suppose there
exists x ∈ S \T . Let z be the closest point of T to x and let H =

{︁
y : aTy = b

}︁
be the hyperplane defined in

Theorem 18. Let b∗ = max
{︁
aTy : y ∈ S

}︁
. We have b∗ < ∞ since S is bounded. Let H∗ =

{︁
y : aTy = b∗}︁

and let S∗ = S ∩H∗.

We observe that if w is a vertex of S∗ then it is also a vertex of S. For if w = λw1 + (1 − λ)w2,w1,w2 ∈
S, 0 < λ < 1 then we have

b∗ = aTw = λaTw1 + (1− λ)aTw2 ≤ λb∗ + (1− λ)b∗ = b∗.

This implies that aTw1 = aTw2 = b∗ and so w1,w2 ∈ S∗, contradiction.

Now consider the point w on the half-line from z through x that lies in S∗ i.e

w = z+
b∗ − b
aTx− b

(x− z).

Now by induction, we can write w =
∑︁k

i=1 λiwi where w1,w2, . . . ,wk are extreme points of S∗ and hence of
S. Also, x = µw + (1− µ)z for some 0 < µ ≤ 1 and so x ∈ ext(S).

The following is sometimes useful.

Lemma 25. Suppose that S is a closed bounded convex set and that f is a convex function. The f achieves
its maximum at an extreme point.

60



Proof. Suppose the maximum occurs at x = λ1x1 + · · · + λkxk where 0 ≤ λ1, . . . , λk ≤ 1 and λ1 + · · · +
λk = 1 and x1, . . . ,xk ∈ ext(S). Then by Jensen’s inequality we have f(x) ≤ λ1f(x1) + · · · + λkf(xk) ≤
max {f(xi) : 1 ≤ i ≤ k}.

This explains why the solutions to linear programs occur at extreme points.

16 Lagrangean Duality

See Diagram 9 at the end of these notes.

Here we consider the primal problem

Minimize f(x) subject to gi(x) ≤ 0, i = 1, 2, . . . ,m, (74)

where f, g1, g2, . . . , gm are convex functions on Rn.

The Lagrangean

L(x,λ) = f(x) +
m∑︂
i=1

λig(x).

The dual problem is

Maximize ϕ(λ) subject to λ ≥ 0 where ϕ(λ) = min
x∈Rn

L(x,λ). (75)

We note that ϕ is a concave function. It is the minimum of a collection of convex (actually linear) functions
of λ – see E3.

D1 :Linear programming. Let f(x) = cTx and gi(x) = −aT
i x+ bi for i = 1, 2, . . . ,m. Then

L(x,λ) =
(︁
cT − λTA

)︁
x+ bTλ where A has rows a1, . . . , am.

It follows that Aλ ̸= c implies that ϕ(λ) = −∞. So the dual problem is

Minimize bTλ subject to ATλ = c.

Weak Duality: If λ is feasible for (75) and x is feasible for (74) then f(x) ≥ ϕ(λ).

ϕ(λ) ≤ L(x,λ) ≤ f(x) since λi ≥ 0, gi(x) ≤ 0, i = 1, 2, . . . ,m. (76)

Now note that ϕ(λ) = −∞, unless cT = λTA, since x is unconstrained in the definition of ϕ. And if
cT = λTA then ϕ(λ) = bTλ. So, the dual problem is to
Maximize bTλ subject to cT = λTA and λ ≥ 0, i.e. the LP dual.

Strong Duality: We give a sufficient condition Slater’s Constraint Condition for tightness in (76).

Theorem 26. Suppose that there exists a point x∗ such that gi(x
∗) < 0, i = 1, 2, . . . ,m. Then

max
λ≥0

ϕ(λ) = min
x:gi(x)≤0,i∈[m]

f(x).

61



Proof. Let

A = {u, t) : ∃x ∈ Rn, gi(x) ≤ ui, i = 1, 2, . . . ,m and f(x) ≤ t} .
B =

{︁
(0, s) ∈ Rm+1 : s < f ∗}︁ where f ∗ = min

x:gi(x)≤0,i∈[m]
f(x).

Now A ∩ B = ∅ and so from Corollary 19 there exists λ, γ, b such that (λ, γ) ̸= 0 and

b ≤ min
{︁
λTu+ γt : (u, t) ∈ A

}︁
. (77)

b ≥ max
{︁
λTu+ γt : (u, t) ∈ B

}︁
. (78)

We deduce from (77) that λ ≥ 0 and ḡ ≥ 0. If γ < 0 or λi < 0 for some i then the minimum in (77) is −∞.
We deduce from (78) that γt < b for all t < f ∗ and so γf ∗ ≤ b. And from (77) that

γf(x) +
m∑︂
i=1

λigi(x) ≥ b ≥ γf ∗ for all x ∈ Rn. (79)

If γ > 0 then we can divide (79) by γ and see that L(x,λ) ≥ f ∗, and together with weak duality, we see that
L(x,λ) = f ∗.

If γ = 0 then substituting x∗ into (79) we see that
∑︁m

i=1 λigi(x
∗) ≥ 0 which then implies that λ = 0,

contradiction.

17 Conditions for a minimum: First Order Condition

17.1 Unconstrained problem

We discuss necessary conditons for a to be a (local) minimum. (We are not assuming that f is convex.) We
will assume that our functions are differentiable. Then Taylor’s Theorem

f(a+ h) = f(a) + (∇f(a))Th+ o(|h|)

implies that
∇f(a) = 0 (80)

is a necessary condition for a to be a local minimum. Otherwise,

f (a− t∇f(a)) ≤ f(a)− t|∇f(a)|2/2

for small t > 0.

Of course (80) is not sufficient in general, a could be a local maximum. Generally spealking, one has to look
at second order conditions to distinguish between local minima and local maxima.

However,

Lemma 27. If f is convex then (80) is also a sufficient condition.

Proof. This follows directly from F3.

62



17.2 Constrained problem

We will consider Problem (74), but we will not assume convexity, only differentiability. The condition cor-
responding to (80) is the Karush-Kuhn-Tucker or KKT condition. Assume that f, g1, g2, . . . , gm are differen-
tiable. Then (subject to some regularity conditions, a necessary condition for a to be a local minimum (or
maximum) to Problem (74) is that there exists λ such that

gi(a) ≤ 0, 1 ≤ i ≤ m. (81)

λi ≥ 0 1 ≤ i ≤ m. (82)

∇f(a) +
m∑︂
i=1

λi∇gi(a) = 0. (83)

λigi(a) = 0, 1 ≤ i ≤ m. Complementary Slackness (84)

The second condition says that only active constraints (gi(a) = 0) are involved in the first condition.

One deals with gi(x) ≥ 0 via −gi(x) ≤ 0 (and λi ≤ 0) and gi(x) = 0 by gi(x) ≥ 0 and −gi(x) ≤ 0 (and λi
not constrined to be non-negative or non-positive).

In the convex case, we will see that (83), (82) and (84) are sufficient for a global minimum.

17.2.1 Heuristic Justification of KKT conditions

See Diagram 10 at the end of these notes.

Suppose that a is a local minimum and assume w.l.o.g. that gi(a) = 0 for i = 1, 2, . . . ,m. Then (heuristically)
Taylor’s theorem implies that if (i) hT∇gi(a) ≤ 0, i = 1, 2, . . . ,m then (ii) we should have hT∇f(a) ≥ 0.
(The heuristic argument is that (i) holds then we should have (iii) a + h feasible for small h and then we
should have (ii) since we are at a local minimum. You need a regularity condition to ensure that (ii) implies
(iii).)

Applying Corollary 20 we see that the KKT conditions hold. We let A have columns ∇gi(a), i = 1, 2, . . . ,m.
Then the KKT conditions are Aλ = −∇f(a).

Convex case: Suppose now that f, g1, . . . , gm are all convex functions and that (x∗,λ∗) satisfies the KKT
conditions. Now λ∗ ≥ 0 implies that ϕ(x) = L(x,λ∗) is a convex function of x. Equation (83) and Lemma
27 implies that x∗ minimises ϕ. But then for any feasible x we have

f(x∗) = ϕ(x∗) ≤ ϕ(x) = f(x) +
m∑︂
i=1

λ∗i gi(x) ≤ f(x).

For much more on this subject see Convex Optimization, by Boyd and Vendenberghe.

63

https://web.stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf


64



65



66



67



68



69



70



71



72



73


	Dynamic Programming
	Simple Production Problem
	Knapsack Problem
	Replacement of a machine
	Probabilistic production problem
	Minimal triangulation of a convex polygon
	Breaking up a stick
	A problem with an infinite time horizon
	Probabilistic version

	Traveling Salesperson problem

	Integer Programming
	Examples
	A cutting plane algorithm for the pure problem

	Branch and bound
	Combinatorial Optimization
	Shortest path
	Non-negative lengths

	No negative cycles
	Digraphs without circuits
	Topological Ordering


	Assignment Problem
	Alternating paths
	Successive shortest path algorithm
	Linear Programming Solution – Hungarian Algorithm

	Matroids and the Greedy Algorithm
	Greedy Algorithm

	Two person zero-sum games
	Dominance
	Latin Square Game
	Non-singular games
	Symmetric games

	Inventory Control
	Model 1
	Model 2
	Model 3:
	Deterministic multi-item problems
	Model 4
	Model 5

	Job Shop Scheduling
	Single machine, minimise weighted completion time
	Single machine, minimise maximum lateness
	Two machine flow shop: Johnson's rule
	π1=π2: Permutation flow shop:
	Johnson's Rule


	Decision Analysis
	Approximation algorithms
	Traveling Salesperson Problem – TSP
	Unrestricted
	Triangle Inequality

	Knapsack problem
	Greedy Algorithm
	Profit rounding algorithm

	Submodular functions
	Local Search
	MaxCut


	Optimization Problems
	Convex sets and functions
	Convex Functions
	Convex Sets

	Algorithms
	Line search – n=1
	Gradient Descent

	Separating Hyperplane
	Convex Hulls
	Extreme Points


	Lagrangean Duality
	Conditions for a minimum: First Order Condition
	Unconstrained problem
	Constrained problem
	Heuristic Justification of KKT conditions



