Department of Mathematical Sciences CARNEGIE MELLON UNIVERSITY

OPERATIONS RESEARCH II 21-393

Answers to homework 1.

Describe a Dynamic programming solution to the following problems:

Q1 Solve the following knapsack problem:

maximise
$$2x_1 + 4x_2 + 10x_3$$

subject to
 $2x_1 + 3x_2 + 6x_3 \leq 15$

 $x_1, x_2, x_3 \ge 0$ and integer.

Solution:

w	f_1	δ_1	f_2	δ_2	f_3	δ_3
0	0	0	0	0	0	0
1	0	0	0	0	0	0
2	2	1	2	0	2	0
3	2	1	2	0	2	0
4	4	1	4	0,1	4	0
5	4	1	6	1	6	0
6	6	1	8	1	10	1
7	6	1	8	1	10	1
8	8	1	10	1	12	1
9	8	1	12	1	14	1
10	10	1	12	1	14	1
11	10	1	14	1	16	1
12	12	1	16	1	20	1
13	12	1	16	1	20	1
14	14	1	18	1	22	1
15	14	1	20	1	24	1

Solution: $x_1 = 0, x_2 = 1, x_3 = 2$. Maximum = 24.

Q2 Consider a 2-D map with a horizontal river passing through its center. There are *n* cities on the southern bank with *x*-coordinates a(1)...a(n) and *n* cities on the northern bank with *x*-coordinates b(1)...b(n). You want to connect as many north-south pairs of cities as possible with bridges such that no two bridges cross. When connecting cities, you can only connect city *i* on the northern bank to city *i* on the southern bank. Construct a Dynamic Programming solution to this problem. (You can assume that $a(1) < a(2) < \cdots < a(n)$, but you **cannot** assume that $b(1) < b(2) < \cdots < b(n)$. If both sequences are increasing, then the problem is trivial).

Solution: Let f(j) be the maximum number of bridges choosable if we only use $(a(i), b(i), i \ge j)$. Then

$$f(j) = \max \begin{cases} f(j+1) & \text{do not choose } (a(j), b(j)) \\ 1 + f(\min\{k > j : b(k) > b(j)\}) & \text{choose } (a(j), b(j)) \end{cases}$$

Q3 A company manufactures two products A and B at a certain facility. The demands for the products are $a_i, b_i, i = 1, 2, ..., n$ over the next n periods. The cost of making x of either product is c(x) and there is room to store H in total of the two products. Cleaning problems require that only one product can be manufactured in any one period and that the same product cannot be manufactured for more than 3 consecutive periods. Assume that at the beginning of period one there is H/2 of each product in storage. The problem is to minimise total cost, given that all demands must be met.

Solution: Let $f_r(\delta_1, \delta_2, \delta_3, i_A, i_B)$ denote the minimum cost of meeting demand over periods $r, r+1, \ldots, n$ given that we manufactured product A in period r-i if $\delta_{4-i} = 1$. If $r \leq 4$ then we drop some of these δ_i parameters. In general we have

$$f_r(0, 0, 0, i_A, i_B) = \min_x \{c(x) + f_{r+1}(0, 0, 1, i_A + x - a_r, i_B - b_r)\}.$$

$$f_r(1, 1, 1, i_A, i_B) = \min_x \{c(x) + f_{r+1}(1, 1, 1, i_A - a_r, i_B + x - b_r)\}.$$