Department of Mathematical Sciences CARNEGIE MELLON UNIVERSITY

OPERATIONS RESEARCH II 21-393

Answers to homework 1.

Describe a Dynamic programming solution to the following problems:

Q1 Solve the following knapsack problem:

maximise
$$
2x_1 + 4x_2 + 10x_3
$$

subject to
 $2x_1 + 3x_2 + 6x_3 \le 15$

 $x_1, x_2, x_3 \geq 0$ and integer.

Solution:

\boldsymbol{w}	f_1	δ_1	f_2	δ_2	f_3	δ_3
$\overline{0}$	$\overline{0}$	$\boldsymbol{0}$	$\boldsymbol{0}$	$\boldsymbol{0}$	$\boldsymbol{0}$	$\overline{0}$
$\mathbf{1}$	$\overline{0}$	$\overline{0}$	$\overline{0}$	$\overline{0}$	$\overline{0}$	$\overline{0}$
$\frac{2}{3}$	$\overline{2}$	$\mathbf{1}$	$\overline{2}$	$\overline{0}$	$\overline{2}$	$\overline{0}$
	$\overline{2}$	$\mathbf{1}$	$\overline{2}$	$\overline{0}$	$\overline{2}$	$\overline{0}$
$\overline{4}$	$\overline{4}$	$\mathbf{1}$	$\overline{4}$	$_{0,1}$	$\overline{4}$	$\overline{0}$
$\overline{5}$	$\overline{4}$	$\mathbf{1}$	6	$\mathbf 1$	6	$\overline{0}$
6	6	$\mathbf{1}$	8	$\mathbf{1}$	10	$\mathbf{1}$
$\overline{7}$	6	$\mathbf{1}$	8	$\mathbf{1}$	10	$\mathbf{1}$
8	8	$\mathbf{1}$	10	$\mathbf{1}$	12	$\mathbf{1}$
9	8	$\mathbf{1}$	12	$\mathbf 1$	14	$\mathbf{1}$
10	10	$\mathbf{1}$	12	$\mathbf{1}$	14	$\mathbf{1}$
11	10	$\mathbf{1}$	14	$\mathbf{1}$	16	$\mathbf 1$
12	12	$\mathbf{1}$	16	$\mathbf 1$	20	$\mathbf{1}$
13	12	$\mathbf{1}$	16	$\mathbf{1}$	20	$\mathbf{1}$
14	14	$\mathbf{1}$	18	$\mathbf{1}$	22	$\mathbf{1}$
15	14	$\mathbf{1}$	20	$\overline{1}$	24	$\mathbf 1$

Solution: $x_1 = 0, x_2 = 1, x_3 = 2$. Maximum = 24.

Q2 Consider a 2-D map with a horizontal river passing through its center. There are *n* cities on the southern bank with x-coordinates $a(1)...a(n)$ and n cities on the northern bank with x-coordinates $b(1)...b(n)$. You want to connect as many north-south pairs of cities as possible with bridges such that no two bridges cross. When connecting cities, you can only connect city i on the northern bank to city i on the southern bank. Construct a Dynamic Programming solution to this problem. (You can assume that $a(1) < a(2) < \cdots < a(n)$, but you **cannot** assume that $b(1) < b(2) < \cdots < b(n)$. If both sequences are increasing, then the problem is trivial).

Solution: Let $f(j)$ be the maximum number of bridges choosable if we only use $(a(i), b(i), i \geq j)$. Then

$$
f(j) = \max \begin{cases} f(j+1) & \text{do not choose } (a(j), b(j))\\ 1 + f(\min\{k > j : b(k) > b(j)\}) & \text{choose } (a(j), b(j)) \end{cases}
$$

.

Q3 A company manufactures two products A and B at a certain facility. The demands for the products are $a_i, b_i, i = 1, 2, ..., n$ over the next n periods. The cost of making x of either product is $c(x)$ and there is room to store H in total of the two products. Cleaning problems require that only one product can be manufactured in any one period and that the same product cannot be manufactured for more than 3 consecutive periods. Assume that at the beginning of period one there is $H/2$ of each product in storage. The problem is to minimise total cost, given that all demands must be met.

Solution: Let $f_r(\delta_1, \delta_2, \delta_3, i_A, i_B)$ denote the minimum cost of meeting demand over periods $r, r+1, \ldots, n$ given that we manufactured product A in period $r - i$ if $\delta_{4-i} = 1$. If $r \leq 4$ then we drop some of these δ_i parameters. In general we have

$$
f_r(\delta_1, \delta_2, \delta_3, i_A, i_B) = \min_x \{c(x) + \min\{f_{r+1}(\delta_2, \delta_3, 0, i_A - a_r, i_B + x - b_r), f_{r+1}(\delta_2, \delta_3, 1, i_A + x - a_r, i_B - b_r)\}\}
$$

if not all δ_i are equal.

$$
f_r(0,0,0,i_A,i_B) = \min_x \{c(x) + f_{r+1}(0,0,1,i_A + x - a_r,i_B - b_r)\}.
$$

$$
f_r(1,1,1,i_A,i_B) = \min_x \{c(x) + f_{r+1}(1,1,1,i_A - a_r,i_B + x - b_r)\}.
$$