Department of Mathematical Sciences

CARNEGIE MELLON UNIVERSITY

OPERATIONS RESEARCH II 21-393

Homework 2: Due Monday October 9.

Q1 Solve the following 2-person zero-sum games:

$$
\left[\begin{array}{ccc}
6 & 2 & 4 \\
5 & 2 & 5 \\
4 & 1 & -3
\end{array}\right] \quad\left[\begin{array}{lllll}
2 & 1 & 1 & 0 & -1 \\
4 & 3 & 2 & 1 & -1 \\
1 & 1 & 0 & -1 & 1 \\
2 & 1 & 1 & -2 & -2 \\
4 & 1 & 0 & -2 & -3
\end{array}\right]
$$

Q2 Find a shortest path from s to all other nodes in the digraph below. Each edge (x, y) is labelled by a pair (a, b) and the length of the corresponding arc is $a+b t$ where t is the time the path reaches x. All arcs are directed lexicograhically e.g. (c, e) is directed from c to e.

Q3 There are two machines available for the processing of $n=2 m$ jobs. The processing time of job j is $p_{j}>0$ for $j=1,2, \ldots, n$. The objective is to assign jobs to machines in order to minimise $\sum_{j=1}^{n} C_{j}$ where C_{j} is the completion time of job j.
(a) Suppose that in an optimum schedule machine 1 processes jobs $i_{1}, i_{2}, \ldots, i_{s}$ and machine 2 processes jobs $j_{1}, j_{2}, \ldots, j_{t}$ in this order. Show that the contribution of machine 1 to the objective function is

$$
s p_{i_{1}}+(s-1) p_{i_{2}}+\cdots+2 p_{i_{s-1}}+p_{i_{s}} .
$$

(b) Show that $p_{i_{1}} \leq p_{i_{2}} \leq \cdots \leq p_{i_{s}}$.
(c) Show that $s=t=m$ in the optimal solution.
(Hint: if $s \geq m+1$, see the effect of moving job i_{1} to the front of machine 2's list.)
(d) Show that $p_{i_{m}} \geq p_{j_{m-1}}$.

Deduce the structure of an optimal solution.

