Department of Mathematical Sciences

CARNEGIE MELLON UNIVERSITY

OPERATIONS RESEARCH II 21-393

Homework 1: Due Monday September 9.

Describe a Dynamic programming solution to the following problems:
Q1 A company manufactures two products A and B at a certain facility. The demands for the products are $a_{r}, b_{r}, r=1,2, \ldots, n$ over the next n periods. The cost of making x of either product is $c(x)$ and there is room to store H in total of the two products. Cleaning problems require that only one product can be manufactured in any one period. Assume that at the beginning of period one there is $H / 2$ of each product in storage. The problem is to minimise total cost, given that all demands must be met.

Solution Let $f(r, a, b)$ denote the minimum cost of meeting demand in periods $r, r+1, \ldots, n$ given that you start period r with a units of A and b units of B in stock. Then we have the recurrence for $r=1,2, \ldots, n$:

$$
f(r, a, b)=\min \left\{\begin{array}{l}
\min _{x}\left\{c(x)+f\left(r+1, a+x-a_{r}, b-b_{r}\right)\right\} \\
\min _{x}\left\{c(x)+f\left(r+1, a-a_{r}, b+x-b_{r}\right)\right\}
\end{array}\right.
$$

In addition $f(r, a, b)=\infty$ if $a<0$ or $b<0$ or $a+b>H$. Also, $f(n+1, a, b)=0$ for $a, b \geq 0$.

Q2 You have to drive across country along a road of length L. There are gas stations at points $P_{1}, P_{2}, \ldots, P_{r}$ along the route. Your car can hold g gallons of gasoline. At gas station i, the price of gas is p_{i} per gallon. If you drive at s miles per hour then you use up $f(s)$ gallons of gas per mile. You can assume that you have to drive at constant speed between stops. You start with a full tank of gas and you have an amount A to spend on the trip. Can you finish the trip in time at most T ?
Hint: let $f(i, a, \gamma)$ denote the minimum time to get from P_{i} to P_{r} given you are at P_{i}, you have a left and γ gallons in your car. Find a recurrence for f.

Solution: Let $f(i, a, g)$ be as in the hint. Let $f(r, a, g)=0$ for all a, g. We have to determine whether or not $f(0, A, g) \leq T$. For this we use the recurrence,

$$
f(i, a, \gamma)=\min _{j>i, s, b}\left\{\frac{P_{j}-P_{i}}{s}+f\left(j, a-b p_{i}, \gamma+b-\left(p_{j}-p_{i}\right) f(s)\right)\right\}
$$

Here j represents the choice of next stop, s represents the speed you will travel and b denotes the amount of gas that you will buy at station i. The constraints are

$$
\begin{aligned}
\gamma+b-\left(P_{j}-P_{i}\right) f(s) & \geq 0 . \\
\gamma+b & \leq g . \\
a-b p_{i} & \geq 0 .
\end{aligned}
$$

Q3 The people of a certain area live at the side of a long straight road of length L . The population is clustered into several villages at points $a_{1}, a_{2}, \ldots, a_{n}$ along the road. There is a proposal to build ℓ fire stations on the road. The problem is to build them so that the maximum distance of a village to its nearest fire station is minimised. Formulate the problem of finding the optimum placement of fire stations as a dynamic program. (Assume that fire stations are to be placed at integer points only on the line.)
Hint: for an interval $I=\{i, i+1, \ldots, j\}$ let $d(I, k)$ denote the maximum distance to a fire station placed at k from villages placed in I. Let $D(I)=\min _{k \in I} d(I, k)$. Now break up stick of length L into ℓ intervals $I_{1}, I_{2}, \ldots, I_{\ell}$ and minimise $\max \left\{D\left(I_{j}\right):_{j}=1,2, \ldots, \ell\right\}$.

Solution:

Let $f(x, i)$ be the maximum distance from a village in $[0, x]$ to its nearest fire station in $[0, x]$ if i fire stations are optimally placed to service the villages in $[0, x]$. Then $f(i, i)=0$ for $i=0,1,2, \ldots, \ell$ and

$$
f(x, i)=\min _{i \leq y \leq x}\{\max \{f(y, i-1), d([y, x])\}\} .
$$

Here y is the tentative place to put the i th firestation.

