Random Variables

A function Z : €2 — R is called a random vari-
able.

Two Dice

Z(z1,T2) = o1 + Z2.
pr =P(Z =k) =P({w: Z(w) = k}).

Kk 2 3 4 5 6 7 8 9 10 11 12

1 2 3 4 5 6 5 4 3 2 1
Pk 36 36 36 36 36 36 36 36 36 36 36




Coloured Balls

2 = {m indistinguishable balls, n colours }.

Uniform distribution.
/, = Nno. colours used.

_ @G5

Pr = <n—|—m—1> '

m

If m = 10,n = 5 then

__ 5 __ 90 __ 360
P1 = 1001°P2 = 1001’ P3 = 1001"
126

P5 = 1o01"



Binomial Random Variable B, p.

n coin tosses. p = P(Heads) for each toss.
Q={H,T}".

P(w) =p"(1—p)" "
where k is the number of H's in w.
Bp p(w) = no. of occurrences of H in w.

n)pk(l -p)" "~

P(Brp=Fk) =,

If n=28 and p=1/3 then



Poisson Random Variable Po()).

Q=1{0,1,2,...,} and

A\ke—A

P(Po(N) = k) = =

for all &k > 0.

This is a limiting case of B, ,/, where n — oo.

Po()\) is the number of occurrences of an event
which is individually rare, but has constant ex-
pectation in a large population.



Fix k, then
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Expectation (Average)

Z IS a random variable. Its expected value is
given by

E(Z) = ) Z(w)P(w)

wel2
= S kP(Z =k).
k

Ex: Two Dice
Z = x1 + xo.

1 2 1
E( /) =2x —+3x —+4.-. 12 x —=17.
(2) 36+ 36+ T 36



10 indistinguishable balls, 5 colours. Z is the
number of colours actually used.

5

E(2) = 1001

360 420 126
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1001 1001 1001’

In general: n colours, m balls.
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Geometric

Q=1{1,2,...,}
P(k) = (1 -p)~1p, Z(k) =k.

E(Z) = 3 k(1-p)1p
k=1
_ p
(1—(1-p))
_ 1
- p

— expected number of trials until success.

k—1 __
Z kx — (1 —:c)2.

k=0



Binomial By p.

n

E(Bnp) = 3 k(,)p*(1-p)"*
k=0
(" )L - )

. k—1

~om—1y g n—k
= npkzl(k_l)p (1-p)

np(p+ (1 —p))" 1
np.
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Suppose X, Y are random variables on the same
probability space €.

Claim: E(X +Y) =E(X) 4+ E(Y).
Proof:

E(X+Y) = ZZ(aJrB)P(X:a,Y:ﬁ)

— ZZaP(X—aY 5)+ZZ[3P(X—aY B)
= Z ZP(X—aY ﬁ)+ZBZP(X—aY B)
_ ZaP(Xza)+ZﬁP(Y:5)

a B

= E(X)+E®).

In general if X1, Xo,...,X, are random vari-
ables on €2 then

E(X1+Xo+ - -+Xp) = E(X1)+E(X2)+ - -+E(Xp)

10



Binomial

if the 2th coin comes up heads.

E(Bnp) = E(X1) + E(X2) 4+ -+ E(Xn) =np
since E(X;) =px 1+ (1—-p) xO0.

Same probability space. Z(w) denotes the num-
ber of occurrences of the sequence H, T, H in

Ww.

Z=X1+Xo+:--+X,,_o Where X; = 1 if coin
tosses i,1+1,:+2 come up H,T, H respectively.
So

E(Z) = E(X1)+E(X2)+- - +E(X, 2) = (n—2)p°(1-p),
since P(z; = 1) = p2(1 — p).
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m Indistinguishable balls, n colours. Z is the
number of colours actually used.

Z; =1 < colour ¢ is used.
Z =71+ .-+ Zp,= number of colours actually

used.

E(Z)

E(Zl) + -+ E(Zn)
nE(Z1)
nPI’(Z]_ # O)

)
R

n

m

n—1
n(1- )
n+m-—1
mn
n+m-—1
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m distinguishable balls, n boxes

Z

number of non-empty boxes.
Z1+Zo+ -+ Zn

where Z, = 1 if box ¢ is non-empty and = 0O
otherwise. Hence,

o =n(1-(1-1)")

since E(Zz-)m: P( box 7 is non-empty) =
(1-(1=2)");

Why is this different from the previous slide?
The answer is that the indistinguishable balls
space is obtained by partitioning the distin-
guishable balls space and then giving each set
of the partition equal probability as opposed to
a probability proportional to its size.

For example, if the balls are indistinguishable
then the probability ?f exactly one non-empty
box is n x (m?ffl_l -~ whereas, if the balls are
distinguishable, this probability becomes

m

nxn
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Conditional Expectation

Suppose A C €2 and Z is a a random variable
on 2. Then

E(Z|A)= ) Z(w)Pw|A) =) kP(Z=k]|A).
weA k

Ex: Two Dice

Z =x1+xp and A ={x1 > xp + 4}.

A={(5,1),(6,1),(6,2)} and so P(A) =1/12.

1/36 1/36 1/36
/ —|—7><—/ 3 —/ =7

E(Z|A) =6x % —
(Z14) 1/12 1/12 1/12
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Let By, B>,..., By be pairwise disjoint events
which partition 2. Let Z be a random variable
on 2. Then

E(Z) = Z E(Z | B;) Pr(B;).

Proof
S E(Z | B)P(B;) — i Z(@) D P(B)
=1 i=1wEB; ( z)
— Y Y Z(w)PW)
1=1web;
= > Z(w)P(w)
we
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Hashing

LetU ={0,1,... , N—1}and H ={0,1,... ,n—
1} where n divides N and N > n. f:U — H,
f(u) =u mod n.

(H is a hash table and U is the universe of
objects from which a subset is to be stored in
the table.)

Suppose ui,un,... ,um, m = an, are a random
subset of U. A copy of u; is stored in “cell”
f(u;) and u;'s that “hash” to the same cell are
stored as a linked list.

Questions: wu is chosen uniformly from U.

(i) What is the expected time 77 to determine
whether or not u is in the table?

(ii) If it is given that w is in the table, what is
the expected time 15 to find where it is placed?

Time = The number of comparisons between

elements of U needed.
16



Let M = N/n, the number of u’s that map to
a cell. Let X; denote the number of wu; for
which f(u;) = k. Then

o
|
[y

=
S
11
>
-
N—

E(Th) = ) E(T1|f(w) =kP(f(u) =k)
k=1
= 3 B(T | f(w) =F)
k=1
_ 13 14 X X, Xy
B nk§1E< 2 M_I_Xk( M))
< %En:E(Xk)
1
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Let X denote X4, Xo,..., X, and let X denote
the set of possible values for X. Then

E(T»)

> E(T2 | X)P(X)
Xex

> 2 E@| f(w) =k X)

XeX k=1
X P(f(’d) = k)P(X)

S BT | () =k X)EP(x)

XeX k=1

> 3 (R Xeen)

XEXk 1

> Z X (1 + Xp)P(X)

XeX k=1

Lo b piex24.. 4 x2
% + QME(X]' + +Xn)

2m
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If « is small and ¢ is small then we can write
M\ (N—M _
(3)Cnt) - MtV = )™t m

(N) t! (m-—t)l NmM

m
( 1\™ mt ale
~ 1__) o |

n

Then we can further write

Qate_

1 1 & o
E(T) = -+ — t =14 =
(12) 2+2a§1 £l T3
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Random Walk: Suppose we do n steps of pre-
viously described random walk. Let Z,, denote
the number of times the walk visits the origin.
Then

Zn=Yo+Y1+Yo+- -+ Yn

where Y; = 1 if X;, = 0 — recall that X, is the
position of the particle after : moves.

But
- 0] | 1 odd
(Yi) = (i/z2)2_75 i even

So

E(Zn)

m _
og%gn (m/Q) 2

S \/2/(wm)
%/On\/Q/(T(‘CB)dCB
= /2n/=w

Q

Q
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Consider the following program which com-

putes the minimum of the n numbers z1,zo,... ,xn.
begin

min = oo,

for : =1 to n do

begin

If x;, < min then min = z;

end

output mmn

end

If the z; are all different and in random order,
what is the expected number of times that that
the statement mwn := x; is executed?

21



Q = {permutations of 1,2,... ;n} — uniform
distribution.

Let X be the number of executions of state-
ment mwn 1= x;. Let

1 statement executed at s.

X; = .
O otherwise

Then X; = 1 iff x; = min{z1,zo,... ,z;} and

SO

— 1)! 1
P(X;=1) = G-y _ 1
7! (/
[The number of permutations of {z1,zo,... ,z;}

in which x; is the largest is (i — 1)!.] So

o) — 8% x)

I
]
Je2
2

&
o
(@]
®
S
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Independent Random Variables

Random variables X,Y defined on the same
probability space are called independent if for
all a, B the events {X = a} and {Y = g} are
independent.

Example: if 2 = {0,1}" and the values of X, Y

depend only on the values of the bits in disjoint
sets Ay, Ay then X,Y are independent.

E.g. if X = number of 1's in first m bits and
Y = number of 1's in last n — m bits.

The independence of X, Y follows directly from
the disjointness of Arx_ ) and Agy_g.
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If X and Y are independent random variables
then

E(XY) = E(X)E(Y).

E(XY)

> > afP(X =a,Y =p)

@ B

= > > afP(X = a)P(Y =5)
@ B

= [eroc=o)

E(X)E(Y).

> _BP(Y = ﬁ)]
8

This is not true if X and Y are not indepen-
dent. E.g. Two Dice: X =z1+xoand Y = z;.
E(X)=7,E(Y)=7/2 and E(XY) = E(z%) +
E(z1zo) = 91/6 + (7/2)2.

24



If X = Bnp = number of heads in n coin flips
and Y = n — Bpp then X and Y are not inde-
pendent. E.g. P(X =n) = p"™ but
P(X=n|Y =n)=0.

Now suppose the number of coin flips is the
random variable N = Po(\). Let X be number
of heads and Y be the number of tails. Let

q=1—np.
P X=z,Y=y) = PX=xz,Y=y|N=x+y)
xP(N =z +y)
<w+y) L g1y \T+Y >

(Ap)"”(kq)ye_A
xly! .
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P(X=2) = Y P(X=ga|N=n)P(N=n)
. n )\”
- Z( >p a n' -
B O.V2) LN (Ag)" "
o x! n;o (n—x)!
— (>‘p)ﬂl7 —AeAq
x!
_ (Ap)® —p
x!
Similarly,
y
P(Y =) = (/\q)
and so

P(X=2Y=y)=PX =2)P(Y =y)

for all x,y and the two random variables are
independent!
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