Random Variables

A function $Z: \Omega \to \mathbf{R}$ is called a random variable.

Two Dice

 $Z(x_1, x_2) = x_1 + x_2$. $p_k = P(Z = k) = P({\omega : Z(\omega) = k}).$

 k 2 3 4 5 6 7 8 9 10 11 12 p_k $\frac{1}{36}$

Coloured Balls

 $\Omega = \{m \}$ indistinguishable balls, n colours Ω . Uniform distribution.

 $Z =$ no. colours used.

$$
p_k = \frac{\binom{n}{k}\binom{m-1}{k-1}}{\binom{n+m-1}{m}}.
$$

If
$$
m = 10, n = 5
$$
 then

$$
p_1 = \frac{5}{1001}, p_2 = \frac{90}{1001}, p_3 = \frac{360}{1001}, p_4 = \frac{420}{1001},
$$

 $p_5 = \frac{1}{1001}$.

Binomial Random Variable $B_{n,p}$.

n coin tosses. $p = P(Heads)$ for each toss. $\Omega = \{H, T\}^n.$

$$
\mathbf{P}(\omega) = p^k (1-p)^{n-k}
$$

where k is the number of H's in ω . $B_{n,p}(\omega) =$ no. of occurrences of H in ω .

$$
\mathbf{P}(B_{n,p}=k)={n \choose k} p^k (1-p)^{n-k}.
$$

If $n = 8$ and $p = 1/3$ then

$$
p_0 = \frac{2^8}{3^8}, p_1 = 8 \times \frac{2^7}{3^8}, p_2 = 28 \times \frac{2^6}{3^8},
$$

\n
$$
p_3 = 56 \times \frac{2^5}{3^8}, p_4 = 140 \times \frac{2^4}{3^8}, p_5 = 56 \times \frac{2^3}{3^8},
$$

\n
$$
p_6 = 28 \times \frac{2^2}{3^8}, p_7 = 8 \times \frac{2}{3^8}, p_8 = \frac{1}{3^8}
$$

3

Poisson Random Variable $Po(\lambda)$.

 $=$ $\begin{bmatrix} 0, 1, 2, \ldots, 1 \end{bmatrix}$ and $P(Po(\lambda) = k) =$ $\lambda^k e^{-\lambda}$ $k!$ for all $k \geq 0$.

This is a limiting case of $B_{n,\lambda/n}$ where $n \to \infty$.

 $Po(\lambda)$ is the number of occurrences of an event which is individually rare, but has constant expe
tation in a large population.

Fix
$$
k
$$
, then

$$
\lim_{n \to \infty} \mathbf{P}(B_{n,\lambda/n} = k) = \lim_{n \to \infty} {n \choose k} \left(\frac{\lambda}{n}\right)^k \left(1 - \frac{\lambda}{n}\right)^{n-k}
$$

$$
= \frac{\lambda^k e^{-\lambda}}{k!}
$$

Explanation of $\binom{n}{k}$ \boldsymbol{k} $n\eta\approx n^k/k!$ for fixed $k.$

$$
\begin{array}{lcl} \displaystyle \frac{n^k}{k!} & \geq & {n \choose k} \\ & = & \displaystyle \frac{n^k}{k!} \left(1 - \frac{1}{n} \right) \left(1 - \frac{2}{n} \right) \cdots \left(1 - \frac{k-1}{n} \right) \\ & & \geq & \displaystyle \frac{n^k}{k!} \left(1 - \frac{k(k-1)}{2n} \right) \end{array}
$$

5

Expectation (Average)

Z is a random variable. Its expected value is given by

$$
\mathbf{E}(Z) = \sum_{\omega \in \Omega} Z(\omega) \mathbf{P}(\omega)
$$

=
$$
\sum_{k} k \mathbf{P}(Z = k).
$$

Ex: Two Dice
\n
$$
Z = x_1 + x_2
$$
.
\n $E(Z) = 2 \times \frac{1}{36} + 3 \times \frac{2}{36} + \dots + 12 \times \frac{1}{36} = 7$.

10 indistinguishable balls, 5 colours. Z is the number of colours actually used.

$$
\mathbf{E}(Z) = \frac{5}{1001} + 2 \times \frac{90}{1001} + 3 \times \frac{360}{1001} + 4 \times \frac{420}{1001} + 5 \times \frac{126}{1001}.
$$

In general: n colours, m balls.

$$
E(Z) = \sum_{k=1}^{n} \frac{k {n \choose k} {n-1 \choose k-1}} {n+m-1 \choose m}
$$

\n
$$
= n \sum_{k=1}^{n} \frac{{n-1 \choose k-1} {n-1 \choose k-1}}{{n+m-1 \choose m}}
$$

\n
$$
= n \sum_{k-1=0}^{n-1} \frac{{n-1 \choose k-1} {m-1 \choose m-k}}{{n+m-1 \choose m}}
$$

\n
$$
= \frac{n {n+m-2 \choose m-1}}{{n+m-1 \choose m}}
$$

\n
$$
= \frac{mn}{n+m-1}.
$$

7

Geometric

$$
\Omega = \{1, 2, \dots, \}
$$

$$
P(k) = (1 - p)^{k-1}p, Z(k) = k.
$$

$$
E(Z) = \sum_{k=1}^{\infty} k(1-p)^{k-1}p
$$

=
$$
\frac{p}{(1-(1-p))^2}
$$

=
$$
\frac{1}{p}
$$

= expected number of trials until success.

$$
\left[\sum_{k=0}^\infty kx^{k-1}=\frac{1}{(1-x)^2} \right]
$$

8

Binomial $B_{n,p}$.

$$
\begin{array}{rcl}\n\mathbf{E}(B_{n,p}) & = & \sum\limits_{k=0}^{n} k \binom{n}{k} p^k (1-p)^{n-k} \\
& = & \sum\limits_{k=1}^{n} n \binom{n-1}{k-1} p^k (1-p)^{n-k} \\
& = & np \sum\limits_{k=1}^{n} \binom{n-1}{k-1} p^{k-1} (1-p)^{n-k} \\
& = & np(p + (1-p))^{n-1} \\
& = & np.\n\end{array}
$$

Poisson $Po(\lambda)$.

$$
\mathbf{E}(Po(\lambda)) = \sum_{k=0}^{\infty} k \frac{\lambda^k e^{-\lambda}}{k!}
$$

= $\lambda \sum_{k=1}^{\infty} \frac{\lambda^{k-1} e^{-\lambda}}{(k-1)!}$
= λ .

Suppose X, Y are random variables on the same probability spa
e .

Claim:
$$
E(X + Y) = E(X) + E(Y)
$$
.
\n**Proof:**
\n
$$
E(X + Y) = \sum_{\alpha} \sum_{\beta} (\alpha + \beta)P(X = \alpha, Y = \beta)
$$
\n
$$
= \sum_{\alpha} \sum_{\beta} \alpha P(X = \alpha, Y = \beta) + \sum_{\alpha} \sum_{\beta} \beta P(X = \alpha, Y = \beta)
$$
\n
$$
= \sum_{\alpha} \alpha \sum_{\beta} P(X = \alpha, Y = \beta) + \sum_{\beta} \beta \sum_{\alpha} P(X = \alpha, Y = \beta)
$$
\n
$$
= \sum_{\alpha} \alpha P(X = \alpha) + \sum_{\beta} \beta P(Y = \beta)
$$
\n
$$
= E(X) + E(Y).
$$

In general if X_1, X_2, \ldots, X_n are random vari-

 $E(X_1+X_2+\cdots+X_n) = E(X_1)+E(X_2)+\cdots+E(X_n)$

Binomial

Write $B_{n,p} = X_1 + X_2 + \cdots + X_n$ where $X_i = 1$ if the *i*th coin comes up heads.

 $E(B_{n,p}) = E(X_1) + E(X_2) + \cdots + E(X_n) = np$

since $E(X_i) = p \times 1 + (1 - p) \times 0$.

Same probability space. $Z(\omega)$ denotes the number of occurrences of the sequence H, T, H in ω . $Z = X_1 + X_2 + \cdots + X_{n-2}$ where $X_i = 1$ if coin tosses \overline{i} , $i+1$, $i+2$ come up H, T, H respectively. **So**

 $E(Z) = E(X_1) + E(X_2) + \cdots + E(X_{n-2}) = (n-2)p^2(1-p).$

since $P(x_i = 1) = p^2(1 - p)$.

 m indistinguishable balls, n colours. Z is the number of colours actually used.

 $Z_i = 1 \leftrightarrow$ colour *i* is used. $Z = Z_1 + \cdots + Z_n =$ number of colours actually used.

$$
E(Z) = E(Z_1) + \dots + E(Z_n)
$$

= $nE(Z_1)$
= $n Pr(Z_1 \neq 0)$
= $n \left(1 - \frac{\binom{n+m-2}{m}}{\binom{n+m-1}{m}}\right)$.
= $n \left(1 - \frac{n-1}{n+m-1}\right)$
= $\frac{mn}{n+m-1}$.

m distinguishable balls, n boxes

 $Z =$ number of non-empty boxes.

 $= Z_1 + Z_2 + \cdots + Z_n$

where $Z_i = 1$ if box i is non-empty and $= 0$ otherwise. Hence,

$$
\mathbf{E}(Z) = n \left(1 - \left(1 - \frac{1}{n} \right)^m \right),
$$

since $\mathbf{E}(Z_i) = \mathbf{P}(\text{ box } i \text{ is non-empty}) =$
 $\left(1 - \left(1 - \frac{1}{n} \right)^m \right)$

Why is this different from the previous slide? The answer is that the indistinguishable balls spa
e is obtained by partitioning the distinguishable balls spa
e and then giving ea
h set of the partition equal probability as opposed to a probability proportional to its size.

For example, if the balls are indistinguishable then the probability of exa
tly one non-empty DOX IS $n \times$ $(m+n-1)$ $n\!-\!1$ Δ where the balls are balls are balls and the balls are distinguishable, this probability becomes $n\times n^{-m}$.

Conditional Expectation

Suppose $A \subseteq \Omega$ and Z is a a random variable on Ω . Then

 $E(Z | A) = \sum_{\omega \in A} Z(\omega) P(\omega | A) = \sum_{k} k P(Z = k | A).$ Ex: Two Dice $Z = x_1 + x_2$ and $A = \{x_1 \ge x_2 + 4\}.$ $A = \{(5, 1), (6, 1), (6, 2)\}\$ and so $P(A) = 1/12$. $\overline{1122}$

$$
\mathbf{E}(Z \mid A) = 6 \times \frac{1/36}{1/12} + 7 \times \frac{1/36}{1/12} + 8 \times \frac{1/36}{1/12} = 7.
$$

Let B_1, B_2, \ldots, B_n be pairwise disjoint events which partition Ω . Let Z be a random variable

$$
\mathbf{E}(Z) = \sum_{i=1}^{n} \mathbf{E}(Z \mid B_i) \operatorname{Pr}(B_i).
$$

Proof

$$
\sum_{i=1}^{n} \mathbf{E}(Z \mid B_i) \mathbf{P}(B_i) = \sum_{i=1}^{n} \sum_{\omega \in B_i} Z(\omega) \frac{\mathbf{P}(\omega)}{\mathbf{P}(B_i)} \mathbf{P}(B_i)
$$

$$
= \sum_{i=1}^{n} \sum_{\omega \in B_i} Z(\omega) \mathbf{P}(\omega)
$$

$$
= \sum_{\omega \in \Omega} Z(\omega) \mathbf{P}(\omega)
$$

$$
= \mathbf{E}(Z).
$$

Hashing

Let $U = \{0, 1, \ldots, N-1\}$ and $H = \{0, 1, \ldots, n-1\}$ 1} where *n* divides N and $N \gg n$. $f : U \to H$, $f(u) = u \mod n$. (H is a hash table and U is the universe of obje
ts from whi
h a subset is to be stored in the table.)

Suppose $u_1, u_2, \ldots, u_m, m = \alpha n$, are a random subset of U . A copy of u_i is stored in "cell" $f(u_i)$ and u_i 's that "hash" to the same cell are stored as a linked list.

Questions: u is chosen uniformly from U . (i) What is the expected time T_1 to determine whether or not u is in the table? (ii) If it is given that u is in the table, what is the expected time T_2 to find where it is placed?

 $Time = The number of comparisons between$ elements of U needed.

Let $M=N/n$, the number of u's that map to a cell. Let X_k denote the number of u_i for which $f(u_i) = k$. Then

$$
\mathbf{E}(T_1) = \sum_{k=1}^{n} \mathbf{E}(T_1 | f(u) = k) \mathbf{P}(f(u) = k)
$$

\n
$$
= \frac{1}{n} \sum_{k=1}^{n} \mathbf{E}(T_1 | f(u) = k)
$$

\n
$$
= \frac{1}{n} \sum_{k=1}^{n} \mathbf{E} \left(\frac{1 + X_k X_k}{2 M} + X_k \left(1 - \frac{X_k}{M} \right) \right)
$$

\n
$$
\leq \frac{1}{n} \sum_{k=1}^{n} \mathbf{E}(X_k)
$$

\n
$$
= \frac{1}{n} \mathbf{E} \left(\sum_{k=1}^{n} X_k \right)
$$

\n
$$
= \alpha.
$$

Let X denote X_1, X_2, \ldots, X_n and let X denote the set of possible values for X . Then

$$
\mathbf{E}(T_2) = \sum_{X \in \mathcal{X}} \mathbf{E}(T_2 | X) \mathbf{P}(X) \n= \sum_{X \in \mathcal{X}} \sum_{k=1}^n \mathbf{E}(T_2 | f(u) = k, X) \n\times \mathbf{P}(f(u) = k) \mathbf{P}(X) \n= \sum_{X \in \mathcal{X}} \sum_{k=1}^n \mathbf{E}(T_2 | f(u) = k, X) \frac{X_k}{m} \mathbf{P}(X) \n= \sum_{X \in \mathcal{X}} \sum_{k=1}^n \left(\frac{1 + X_k}{2}\right) \frac{X_k}{m} \mathbf{P}(X) \n= \frac{1}{2m} \sum_{X \in \mathcal{X}} \sum_{k=1}^n X_k (1 + X_k) \mathbf{P}(X) \n= \frac{1}{2} + \frac{1}{2M} \mathbf{E}(X_1^2 + \dots + X_n^2) \n= \frac{1}{2} + \frac{1}{2\alpha} \mathbf{E}(X_1^2) \n= \frac{1}{2} + \frac{1}{2\alpha} \sum_{t=1}^m t^2 \frac{\binom{M}{t} \binom{N-M}{m-t}}{\binom{N}{m}}.
$$

If α is small and t is small then we can write $\frac{\binom{M}{t}\binom{N-M}{m-t}}{\binom{N}{m}} \approx \frac{M^t}{t!} \frac{(N-M)^{m-t}}{(m-t)!} \frac{m!}{N^m}$
 $\approx \left(1 - \frac{1}{n}\right)^m \frac{m^t}{t!n^t} \approx \frac{\alpha^t e^{-\alpha}}{t!}.$

Then we can further write

$$
E(T_2) \approx \frac{1}{2} + \frac{1}{2\alpha} \sum_{t=1}^{\infty} t^2 \frac{\alpha^t e^{-\alpha}}{t!} = 1 + \frac{\alpha}{2}
$$

Random Walk: Suppose we do n steps of previously described random walk. Let Z_n denote the number of times the walk visits the origin. Then

$$
Z_n = Y_0 + Y_1 + Y_2 + \cdots + Y_n
$$

where $Y_i = 1$ if $X_i = 0$ – recall that X_i is the position of the particle after i moves.

But

$$
\mathbf{E}(Y_i) = \begin{cases} 0 & i \text{ odd} \\ \binom{i}{i/2} 2^{-i} & i \text{ even} \end{cases}
$$

So

$$
\mathbf{E}(Z_n) = \sum_{\substack{0 \le m \le n \\ m \text{ even}}} {m \choose m/2} 2^{-m}.
$$

$$
\approx \sum_{\substack{n \\ \ge 1}} \sqrt{2/(\pi m)}
$$

$$
\approx \frac{1}{2} \int_0^n \sqrt{2/(\pi x)} dx
$$

$$
= \sqrt{2n/\pi}
$$

Consider the following program which computes the minimum of the *n* numbers x_1, x_2, \ldots, x_n .

begin $min := \infty;$ for $i=1$ to n do begin if $x_i < min$ then $min := x_i$ end output min end

If the x_i are all different and in random order, what is the expected number of times that that the statement $min := x_i$ is executed?

 $\Omega = \{$ permutations of $1, 2, ..., n\}$ – uniform distribution.

Let X be the number of executions of statement $min := x_i$. Let

$$
X_i = \begin{cases} 1 & \text{statement executed at } i. \\ 0 & \text{otherwise} \end{cases}
$$

Then $X_i = 1$ iff $x_i = \min\{x_1, x_2, ..., x_i\}$ and SO

$$
P(X_i = 1) = \frac{(i-1)!}{i!} = \frac{1}{i}.
$$

[The number of permutations of $\{x_1, x_2, \ldots, x_i\}$ in which x_i is the largest is $(i - 1)!$ So

$$
\mathbf{E}(X) = \mathbf{E}\left(\sum_{i=1}^{n} X_i\right)
$$

=
$$
\sum_{i=1}^{n} \mathbf{E}(X_i)
$$

=
$$
\sum_{i=1}^{n} \frac{1}{i} \qquad (= H_n)
$$

$$
\approx \log_e n.
$$

Independent Random Variables

Random variables X, Y defined on the same probability space are called independent if for all α, β the events $\{X = \alpha\}$ and $\{Y = \beta\}$ are independent.

Example: if $\Omega = \{0,1\}^n$ and the values of X, Y depend only on the values of the bits in disjoint sets Δ_X , Δ_Y then X, Y are independent.

E.g. if $X =$ number of 1's in first m bits and $Y =$ number of 1's in last $n - m$ bits.

The independence of X, Y follows directly from the disjointness of $\Delta_{\{X=\alpha\}}$ and $\Delta_{\{Y=\beta\}}$.

If X and Y are independent random variables then

$$
\mathbf{E}(XY) = \mathbf{E}(X)\mathbf{E}(Y).
$$

$$
\mathbf{E}(XY) = \sum_{\alpha} \sum_{\beta} \alpha \beta \mathbf{P}(X = \alpha, Y = \beta)
$$

=
$$
\sum_{\alpha} \sum_{\beta} \alpha \beta \mathbf{P}(X = \alpha) \mathbf{P}(Y = \beta)
$$

=
$$
\left[\sum_{\alpha} \alpha \mathbf{P}(X = \alpha) \right] \left[\sum_{\beta} \beta \mathbf{P}(Y = \beta) \right]
$$

=
$$
\mathbf{E}(X)\mathbf{E}(Y).
$$

This is not true if X and Y are not independent. E.g. Two Dice: $X = x_1 + x_2$ and $Y = x_1$. $E(X) = 7$, $E(Y) = 7/2$ and $E(XY) = E(x_1^2) +$ $E(x_1x_2) = 91/6 + (7/2)^2$.

If $X = B_{n,p} =$ number of heads in *n* coin flips and $Y = n - B_{n,p}$ then X and Y are not independent. E.g. $P(X=n) = p^n$ but $P(X = n | Y = n) = 0.$

random variable $N = Po(\lambda)$. Let X be number of heads and Y be the number of tails. Let $q = 1 - p$.

$$
P(X = x, Y = y) = P(X = x, Y = y | N = x + y)
$$

\n
$$
\times P(N = x + y)
$$

\n
$$
= {x + y \choose x} p^x q!^y \frac{\lambda^{x+y}}{(x+y)!} e^{-\lambda}
$$

\n
$$
= \frac{(\lambda p)^x (\lambda q)^y}{x! y!} e^{-\lambda}.
$$

$$
P(X = x) = \sum_{n \ge x} P(X = x | N = n) P(N = n)
$$

=
$$
\sum_{n \ge x} {n \choose x} p^x q^{n-x} \frac{\lambda^n}{n!} e^{-\lambda}
$$

=
$$
\frac{(\lambda p)^x}{x!} e^{-\lambda} \sum_{n-x \ge 0} \frac{(\lambda q)^{n-x}}{(n-x)!}
$$

=
$$
\frac{(\lambda p)^x}{x!} e^{-\lambda} e^{\lambda q}
$$

=
$$
\frac{(\lambda p)^x}{x!} e^{-\lambda p}.
$$

Similarly,

$$
\mathbf{P}(Y=y) = \frac{(\lambda q)^y}{y!} e^{-\lambda q}
$$

and so

$$
\mathbf{P}(X=x, Y=y) = \mathbf{P}(X=x)\mathbf{P}(Y=y)
$$

for all x, y and the two random variables are independent!