Conditional Probability

Suppose $A \subseteq \Omega$. We define an *induced* probability P_A by

$$
\mathbf{P}_A(\omega) = \frac{\mathbf{P}(\omega)}{\mathbf{P}(A)} \quad \text{for } \omega \in A.
$$

Usually write $P(B | A)$ for $P_A(B)$.

If B is an arbitrary subset of Ω we write $P(B | A) = P_A(A \cap B) =$ $P(A \cap B)$ $P(A)$ Two fair dice are thrown. Given that the first shows 3, what is the probability that the total exceeds 6? The answer is obviously $\frac{1}{2}$ since the second must show 4,5 or 6.

In detail: $\Omega = [6]^2$ with uniform mesaure. Let

$$
A = \{(i, j) \in [6]^2 : i = 3\}.
$$

\n
$$
B = \{(i, j) \in [6]^2 : i + j > 6\}
$$

\n
$$
A \cap B = \{(i, j) \in [6]^2 : i = 3, j > 3\}.
$$

Thus

$$
P(A) = \frac{1}{6}, \ P(A \cap B) = \frac{3}{36} = \frac{1}{12}
$$

and so

$$
P(A | B) = \frac{1/12}{1/6} = \frac{1}{2}.
$$

Suppose that a family has two children and that each child is equally likely to be a Boy or a Girl. What is the probability that the family has two boys, given that it has at least one Boy.

Probability Space: {BB, BG, GB, GG} with uniform measure, where GB means that the first child is a Girl and the second child is a Boy et
..

 $\mathcal{A} = \{$ At least one child is a Boy $\} = \{BG, GB, BB\}.$ So

$$
P(\mathcal{A})=3/4.
$$

and

$$
\mathbf{P}(\{BB\} \mid \mathcal{A}) = \frac{\mathbf{P}(\{BB\} \cap \mathcal{A})}{\mathbf{P}(\mathcal{A})} = \frac{\mathbf{P}(\{BB\})}{\mathbf{P}(\mathcal{A})} = \frac{1}{3}.
$$

Monty Hall Paradox

Suppose you're on a game show, and you're given the choice of three doors: Behind one door is a car; behind the others, goats. You pick a door, say Number a , and the host, who knows what's behind the other doors, opens another door b which has a goat. He then says to you, 'Do you want to pi
k door Number $c \neq a, b$?' Is it to your advantage to take the switch?

The door hiding the car has been chosen randomly, if door a hides the car then the host chooses b randomly and there is an implicit assumption that you prefer a car to a goat.

Incorrect Analysis:

Probability space is $\{1, 2, 3\}$ where *i* denotes that the car is behind door i and $P(i) = \frac{1}{2}$ for $i = 1, 2, 3$.

Answer: Assume for example that $a = 1$. Then for $b = 2, 3$,

P(1 ^j not b) = P(1) $\mathbf{P}(\texttt{not } b)$ P(1) $P(1) + P(5 - b)$:

So there is no advantage to be gained from switching.

Correct Analysis:

Assume that $a = 1$. Probability space is $\{12, 13, 23, 32\}$ where ij denotes that the car is behind door i and the host opens door j .

P(12) = P(13) = \sim and P and P and P and P <u>33 June 1999 - Ju</u> \bullet So,

$$
P(1) = P(12) + P(13) = \frac{1}{3}.
$$

So there is an advantage to be gained from switching.

Look at it this way: The probability the car is not behind door a is $2/3$ and switching causes you to win whenever this happens!

Binomial n coin tosses. $p = P(Heads)$ for each toss. $\Omega = \{H, T\}^n.$

$$
\mathbf{P}(\omega) = p^k (1-p)^{n-k}
$$

where k is the number of H's in ω . E.g. $P(HHTTHTHHTHHTHTHT) = p^{8}(1-p)^{6}$.

Fix k . $A = \{\omega : H$ appears k times} $P(A) = {n \choose k} p^{k} (1-p)^{n-k}.$ If $\omega \in A$ then

$$
\mathbf{P}_A(\omega)=\frac{p^k(1-p)^{n-k}}{\binom{n}{k}p^k(1-p)^{n-k}}=\frac{1}{\binom{n}{k}}
$$

i.e. *conditional* on there being k heads, each sequence with k heads is equally likely.

Balls in boxes

 m distinguishable balls in n distinguishable boxes.

Let

$$
E_i = \{ \text{Box } i \text{ is empty} \}.
$$

$$
\mathsf{Pr}(E_1) = \mathsf{Pr}(E_2) = \left(1 - \frac{1}{n}\right)^m
$$

and

$$
\Pr(E_1 \cap E_2) = \left(1 - \frac{2}{n}\right)^m < \Pr(E_1) \Pr(E_2).
$$

So

$Pr(E_1 | E_2) < Pr(E_1)$.

We say that the two events are negatively correlated.

Law of Total Probability

Let B_1, B_2, \ldots, B_n be pairwise disjoint events which partition Ω . For any other event A,

$$
\mathbf{P}(A) = \sum_{i=1}^{n} \mathbf{P}(A \mid B_i)\mathbf{P}(B_i).
$$

Proof

$$
\sum_{i=1}^{n} \mathbf{P}(A \mid B_i) \mathbf{P}(B_i) = \sum_{i=1}^{n} \mathbf{P}(B_i \cap A)
$$

$$
= \mathbf{P}(\bigcup_{i=1}^{n} (B_i \cap A)) \quad (1)
$$

$$
= \mathbf{P}(A).
$$

There is equality in (1) because the events $B_i \cap$ A are pairwise disjoint.

Suppose that we have 2 crooked dice and that if the outcome of the first is X then the outocme of the second Y satisfies

Y is uniformly chosen from $\{X-1, X, X+1\}$. (If $X = 1$ or 6 then Y has 2 equally likely val $ues.$)

What is the probability that $X = Y$, assuming that Pr(X = i) = $\frac{1}{6}$ for $i = 1, 2, ..., 6$?

$$
Pr(X = Y) = \sum_{i=1}^{6} Pr(X = Y | X = i) Pr(X = i)
$$

= $\frac{1}{6} \sum_{i=1}^{6} Pr(X = Y | X = i)$
= $\frac{1}{6} (\frac{1}{2} + \frac{1}{3} + \frac{1}{3} + \frac{1}{3} + \frac{1}{3} + \frac{1}{2})$
= $\frac{7}{18}$.

We are given two urns, each containing a collection of coloured balls. Urn 1 contains 2 Red and 3 Blue balls. Urn 2 contains 3 Red and 4 Blue balls. A ball b_1 is drawn at random from Urn 1 and placed in Urn 2 and then a ball b_2 is chosen at random from Urn 2 and examined. hosen at random from Urn 2 and examined. What is the probability that b_2 is Blue?

Let

$$
A = \{b_2 \text{ is Blue}\}
$$

\n
$$
B_1 = \{b_1 \text{ is Blue}\}
$$

\n
$$
B_2 = \{b_1 \text{ is Red}\}
$$

Then

So,

$$
P(B_1) = \frac{3}{5}, \ P(B_2) = \frac{2}{5}
$$

$$
P(A | B_1) = \frac{5}{8}, \ P(A | B_2) = \frac{1}{2}.
$$

$$
P(A) = \frac{5}{8} \times \frac{3}{8} + \frac{1}{8} \times \frac{2}{8} = \frac{23}{18}.
$$

 $5-5$

 $5-5$

8

 11

2 sets $S, T \subseteq [n]$ are chosen (i) independently and (ii) uniformly at random from all possible sets. $(\Omega = \{0,1\}^{2n})$. Let

 $A = \{ |S| = |T| \text{ and } S \cap T = \emptyset \}.$

For each $X \subseteq [n]$ we let $B_X = \{S = X\}$ $\{(X,T): T \subseteq [n]\}\)$. Thus for each $X, P(B_X) =$ 2^{-n} So,

$$
P(A) = \sum_{X} P(A | B_X) P(B_X)
$$

= $2^{-n} \sum_{X} {n - |X| \choose |X|} 2^{-n}$ (2)
= $4^{-n} \sum_{k=0}^{n} {n \choose k} {n - k \choose k}.$

(2) follows from the fact that there are $\binom{n-|X|}{|X|}$ $|X|$ \sim \sim subsets of the same size as X which are disjoint from X.

Independence

Two events A, B are said to be independent if

 $P(A \cap B) = P(A)P(B),$

or equivalently

$$
\mathbf{P}(A \mid B) = \mathbf{P}(A).
$$

(i) Two Dice $A = \{ \omega : x_1 \text{ is odd} \}, B = \{ \omega : x_1 = x_2 \}.$ $|A|=18$, $|B|=6$, $|A \cap B|=3$. $P(A) = 1/2$, $P(B) = 1/6$, $P(A \cap B) = 1/12$. A, B are independent.

(ii) $A = \{x_1 > 3\}, B = \{x_1 > x_2\}.$ $|A|=24$, $|B|=21$, $|A \cap B|=18$. $P(A) = 2/3$, $P(B) = 7/12$, $P(A \cap B) = 1/2$. A, B are not independent.

Random Bits

Suppose $\Omega = \{0,1\}^n = \{(x_1, x_2, \ldots, x_n): x_j =$ $0/1$ } with uniform distribution. Suppose event A is determined by the values of $x_i, i \in \Delta_A$ e.g. if $A = \{x_1 = x_2 = \cdots = x_{10} = 0\}$ then $\Delta_A = \{1, 2, \ldots, 10\}.$

More Precisely: for $S \subseteq [n]$ and $x \in \Omega$ let $x_S \in \{0,1\}^S$ be defined by $(x_S)_i = x_i, i \in S$. Ex. $n = 10$, $S = \{2, 5, 8\}$ and $x = (0, 0, 1, 0, 0, 1, 1, 1, 1, 0)$ $x_S = \{0, 0, 1\}.$

A is determined by Δ_A if $\exists S_A \subseteq \{0,1\}^{\Delta_A}$ such that $x \in A$ iff $x_{\Delta_A} \in S_A$. Furthermore, no subset of Δ_A has this property.

In our example above, $S_A = \{(0, 0, 0, 0, 0, 0, 0, 0, 0, 0)\} - (|S_A| = 1 \text{ here.})$ **Claim:** if events A, B are such that $\Delta_A \cap \Delta_B =$ \emptyset then A and B are independent.

$$
P(A) = \frac{|S_A|}{2|\Delta_A|} \text{ and } P(B) = \frac{|S_B|}{2|\Delta_B|}.
$$

\n
$$
P(A \cap B) = \frac{1}{2^n} \sum_{x \in \{0,1\}^n} 1_{\{x_{\Delta_A} \in S_A, x_{\Delta_B} \in S_B\}}
$$

\n
$$
= \frac{1}{2^n} |S_A| |S_B| 2^{n-|I_A| - |I_B|}
$$

\n
$$
= P(A)P(B).
$$