Conditional Probability

Suppose $A \subseteq \Omega$. We define an *induced* probability \mathbf{P}_A by

$$\mathbf{P}_A(\omega) = rac{\mathbf{P}(\omega)}{\mathbf{P}(A)}$$
 for $\omega \in A$.

Usually write $\mathbf{P}(B \mid A)$ for $P_A(B)$.

If *B* is an arbitrary subset of Ω we write $\mathbf{P}(B \mid A) = \mathbf{P}_A(A \cap B) = \frac{\mathbf{P}(A \cap B)}{\mathbf{P}(A)}.$ Two fair dice are thrown. Given that the first shows 3, what is the probability that the total exceeds 6? The answer is obviously $\frac{1}{2}$ since the second must show 4,5 or 6.

In detail: $\Omega = [6]^2$ with uniform mesaure. Let

$$A = \{(i,j) \in [6]^2 : i = 3\}.$$

$$B = \{(i,j) \in [6]^2 : i+j > 6\}$$

$$A \cap B = \{(i,j) \in [6]^2 : i = 3, j > 3\}.$$

Thus

$$P(A) = \frac{1}{6}, P(A \cap B) = \frac{3}{36} = \frac{1}{12}$$

and so

$$\mathbf{P}(A \mid B) = \frac{1/12}{1/6} = \frac{1}{2}.$$

Suppose that a family has two children and that each child is equally likely to be a Boy or a Girl. What is the probability that the family has two boys, given that it has at least one Boy.

Probability Space: {BB,BG,GB,GG} with uniform measure, where *GB* means that the first child is a Girl and the second child is a Boy etc..

 $\mathcal{A} = \{ At \text{ least one child is a Boy} \} = \{ BG, GB, BB \}.$ So

$$\mathbf{P}(\mathcal{A})=3/4.$$

and

$$\mathbf{P}(\{BB\} \mid \mathcal{A}) = \frac{\mathbf{P}(\{BB\} \cap \mathcal{A})}{\mathbf{P}(\mathcal{A})} = \frac{\mathbf{P}(\{BB\})}{\mathbf{P}(\mathcal{A})} = \frac{1}{3}.$$

Monty Hall Paradox

Suppose you're on a game show, and you're given the choice of three doors: Behind one door is a car; behind the others, goats. You pick a door, say Number a, and the host, who knows what's behind the other doors, opens another door b which has a goat. He then says to you, 'Do you want to pick door Number $c \neq a, b$?' Is it to your advantage to take the switch?

The door hiding the car has been chosen randomly, if door a hides the car then the host chooses b randomly and there is an implicit assumption that you prefer a car to a goat.

Incorrect Analysis:

Probability space is $\{1, 2, 3\}$ where *i* denotes that the car is behind door *i* and $P(i) = \frac{1}{3}$ for i = 1, 2, 3.

Answer: Assume for example that a = 1. Then for b = 2, 3,

 $P(1 \mid \text{not } b) = \frac{P(1)}{P(\text{not } b)} = \frac{P(1)}{P(1) + P(5 - b)} = \frac{1}{2}.$

So there is no advantage to be gained from switching.

Correct Analysis:

Assume that a = 1. Probability space is $\{12, 13, 23, 32\}$ where *ij* denotes that the car is behind door *i* and the host opens door *j*.

 $P(12) = P(13) = \frac{1}{6}$ and $P(23) = P(32) = \frac{1}{3}$. So,

$$P(1) = P(12) + P(13) = \frac{1}{3}$$

So there is an advantage to be gained from switching.

Look at it this way: The probability the car is not behind door a is 2/3 and switching causes you to win whenever this happens!

Binomial *n* coin tosses. p = P(Heads) for each toss. $\Omega = \{H, T\}^n$.

$$\mathbf{P}(\omega) = p^k (1-p)^{n-k}$$

where k is the number of H's in ω . E.g. $P(HHTTHTHTHTHTT) = p^8(1-p)^6$.

Fix k. $A = \{\omega : H \text{ appears } k \text{ times}\}$ $\mathbf{P}(A) = {n \choose k} p^k (1-p)^{n-k}.$ If $\omega \in A$ then

$$\mathrm{P}_A(\omega) = rac{p^k(1-p)^{n-k}}{{n \choose k}p^k(1-p)^{n-k}} = rac{1}{{n \choose k}}$$

i.e. conditional on there being k heads, each sequence with k heads is equally likely.

Balls in boxes

m distinguishable balls in n distinguishable boxes.

Let

$$E_i = \{ \text{Box } i \text{ is empty} \}.$$

$$\Pr(E_1) = \Pr(E_2) = \left(1 - \frac{1}{n}\right)^m$$

and

$$\Pr(E_1 \cap E_2) = \left(1 - \frac{2}{n}\right)^m < \Pr(E_1)\Pr(E_2).$$

So

$\Pr(E_1 \mid E_2) < \Pr(E_1).$

We say that the two events are *negatively correlated*.

Law of Total Probability

Let B_1, B_2, \ldots, B_n be pairwise disjoint events which partition Ω . For any other event A,

$$\mathbf{P}(A) = \sum_{i=1}^{n} \mathbf{P}(A \mid B_i) \mathbf{P}(B_i).$$

Proof

$$\sum_{i=1}^{n} \mathbf{P}(A \mid B_i) \mathbf{P}(B_i) = \sum_{i=1}^{n} \mathbf{P}(B_i \cap A)$$
$$= \mathbf{P}(\bigcup_{i=1}^{n} (B_i \cap A)) (1)$$
$$= \mathbf{P}(A).$$

There is equality in (1) because the events $B_i \cap A$ are pairwise disjoint.

Suppose that we have 2 crooked dice and that if the outcome of the first is X then the outocme of the second Y satisfies

Y is uniformly chosen from $\{X - 1, X, X + 1\}$. (If X = 1 or 6 then Y has 2 equally likely values.)

What is the probability that X = Y, assuming that $Pr(X = i) = \frac{1}{6}$ for i = 1, 2, ..., 6?

$$Pr(X = Y) = \sum_{i=1}^{6} Pr(X = Y | X = i) Pr(X = i)$$

= $\frac{1}{6} \sum_{i=1}^{6} Pr(X = Y | X = i)$
= $\frac{1}{6} \left(\frac{1}{2} + \frac{1}{3} + \frac{1}{3} + \frac{1}{3} + \frac{1}{3} + \frac{1}{2}\right)$
= $\frac{7}{18}$.

We are given two urns, each containing a collection of coloured balls. Urn 1 contains 2 Red and 3 Blue balls. Urn 2 contains 3 Red and 4 Blue balls. A ball b_1 is drawn at random from Urn 1 and placed in Urn 2 and then a ball b_2 is chosen at random from Urn 2 and examined. What is the probability that b_2 is Blue?

Let

$$A = \{b_2 \text{ is Blue}\}$$
$$B_1 = \{b_1 \text{ is Blue}\}$$
$$B_2 = \{b_1 \text{ is Red}\}$$

Then

So,

$$P(B_1) = \frac{3}{5}, \ P(B_2) = \frac{2}{5}$$
$$P(A \mid B_1) = \frac{5}{8}, \ P(A \mid B_2) = \frac{1}{2}.$$
$$P(A) = \frac{5}{8} \times \frac{3}{5} + \frac{1}{2} \times \frac{2}{5} = \frac{23}{40}.$$

40

2 sets $S,T \subseteq [n]$ are chosen (i) independently and (ii) uniformly at random from all possible sets. ($\Omega = \{0,1\}^{2n}$). Let

 $A = \{ |S| = |T| \text{ and } S \cap T = \emptyset \}.$

For each $X \subseteq [n]$ we let $B_X = \{S = X\} = \{(X,T) : T \subseteq [n]\}$. Thus for each X, $P(B_X) = 2^{-n}$. So,

$$P(A) = \sum_{X} P(A \mid B_{X}) P(B_{X})$$

= $2^{-n} \sum_{X} {n - |X| \choose |X|} 2^{-n}$ (2)
= $4^{-n} \sum_{k=0}^{n} {n \choose k} {n - k \choose k}.$

(2) follows from the fact that there are $\binom{n-|X|}{|X|}$ subsets of the same size as X which are disjoint from X.

Independence

Two events A, B are said to be *independent* if

 $\mathbf{P}(A \cap B) = \mathbf{P}(A)\mathbf{P}(B),$

or equivalently

$$\mathbf{P}(A \mid B) = \mathbf{P}(A).$$

(i) **Two Dice** $A = \{\omega : x_1 \text{ is odd}\}, B = \{\omega : x_1 = x_2\}.$ $|A|=18, |B|=6, |A \cap B|=3.$ $P(A) = 1/2, P(B) = 1/6, P(A \cap B) = 1/12.$ A, B are independent.

(ii) $A = \{x_1 \ge 3\}, B = \{x_1 \ge x_2\}.$ $|A|=24, |B|=21, |A \cap B|=18.$ $P(A) = 2/3, P(B) = 7/12, P(A \cap B) = 1/2.$ A, B are not independent.

Random Bits

Suppose $\Omega = \{0, 1\}^n = \{(x_1, x_2, \dots, x_n) : x_j = 0/1\}$ with uniform distribution. Suppose event A is determined by the values of $x_i, i \in \Delta_A$ e.g. if $A = \{x_1 = x_2 = \dots = x_{10} = 0\}$ then $\Delta_A = \{1, 2, \dots, 10\}.$

More Precisely: for $S \subseteq [n]$ and $x \in \Omega$ let $x_S \in \{0,1\}^S$ be defined by $(x_S)_i = x_i, i \in S$. Ex. $n = 10, S = \{2,5,8\}$ and $x = (0,0,1,0,0,1,1,1,1,0\}$. $x_S = \{0,0,1\}$.

A is determined by Δ_A if $\exists S_A \subseteq \{0,1\}^{\Delta_A}$ such that $x \in A$ iff $x_{\Delta_A} \in S_A$. Furthermore, no subset of Δ_A has this property.

In our example above, $S_A = \{(0, 0, 0, 0, 0, 0, 0, 0, 0, 0)\} - (|S_A| = 1 \text{ here.})$ 14 **Claim:** if events A, B are such that $\Delta_A \cap \Delta_B = \emptyset$ then A and B are independent.

$$\mathbf{P}(A) = \frac{|S_A|}{2^{|\Delta_A|}} \text{ and } \mathbf{P}(B) = \frac{|S_B|}{2^{|\Delta_B|}}.$$
$$\mathbf{P}(A \cap B) = \frac{1}{2^n} \sum_{x \in \{0,1\}^n} \mathbf{1}_{\{x \Delta_A \in S_A, x \Delta_B \in S_B\}}$$
$$= \frac{1}{2^n} |S_A| |S_B| \mathbf{2}^{n-|I_A|-|I_B|}$$
$$= \mathbf{P}(A)\mathbf{P}(B).$$