#### **Balls in Boxes**

m distinguishable balls in n distinguishable boxes.  $\Omega = [n]^m = \{(b_1, b_2, \dots, b_m)\}$  where  $b_i$  denotes the box containing ball i.

Uniform distribution.

$$E = \{ \text{Box 1 is empty} \}.$$

$$P(E) = \frac{(n-1)^m}{n^m}$$

$$= \left(1 - \frac{1}{n}\right)^m$$

$$\to e^{-c} \text{ as } n \to \infty$$

if m = cn where c > 0 is constant.

# Explanation of limit: $(1-1/n)^{cn} \rightarrow e^{-c}$ .

- $1 + x < e^x$  for all x;
  - 1.  $x \ge 0$ :  $1+x \le 1+x+x^2/2!+x^3/3!+\cdots = e^x$
  - 2. x < -1:  $1 + x < 0 < e^x$ .
  - 3.  $x = -y, 0 \le y \le 1$ :  $1-y \le 1-y+(y^2/2!-y^3/3!)+(y^4/4!-y^5/5!)+\cdots=e^{-y}$ .
  - 4. So

$$(1-1/n)^{cn} \le (e^{-1/n})^{cn} = e^{-c}.$$

$$e^{-x-x^2} \le 1 - x \text{ if } 0 \le x \le 1/100.$$
 (1)

$$\log_{e}(1-x) = -x - \frac{x^{2}}{2} - \frac{x^{3}}{3} - \frac{x^{4}}{4} - \cdots$$

$$\geq -x - \frac{x^{2}}{2} - x^{2} \left(\frac{x}{3} + \frac{x^{2}}{3} - \cdots\right)$$

$$= -x - \frac{x^{2}}{2} - \frac{x^{3}}{3(1-x)}$$

$$\geq -x - x^{2}.$$

This proves (1). So, for large n,

$$(1-1/n)^{cn} \geq \exp\{-cn(1/n+1/n^2)\}$$

$$= \exp\{-c-c/n\}$$

$$\to \epsilon^{-c}.$$

#### Random Walk

A particle starts at 0 on the real line and each second makes a random move left of size 1, (probability 1/2) or right of size 1 (probability 1/2).

Consider *n* moves.  $\Omega = \{L, R\}^n$ .

For example if n=4 then LLRL stands for move left, move left, move right, move left. Each sequence  $\omega$  is given an equal probability

 $2^{-n}$ 

Let  $X_n = X_n(\omega)$  denote the position of the particle after n moves.

Suppose n = 2m. What is the probability  $X_n = 0$ ?

$$\frac{\binom{n}{m}}{2^n} pprox \sqrt{\frac{2}{\pi n}}.$$

Stirling's Formula:  $n! \approx \sqrt{2\pi n} (n/e)^n$ .

## **Boole's Inequality**

 $A, B \subseteq \Omega$ .

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$\leq P(A) + P(B)$$
 (2)

If A, B are disjoint events i.e.  $A \cap B = \emptyset$  then  $\mathbf{P}(A \cup B) = \mathbf{P}(A) + \mathbf{P}(B)$ .

Example: Two Dice.  $A = \{x_1 \geq 3\}$  and  $B = \{x_2 \geq 3\}$ .

Then P(A) = P(B) = 2/3 and

$$P(A \cup B) = 8/9 < P(A) + P(B).$$

More generally,

$$\mathbf{P}\left(\bigcup_{i=1}^{n} A_i\right) \le \sum_{i=1}^{n} \mathbf{P}(A_i). \tag{3}$$

**Inductive proof** 

Base case: n=1

Inductive step: assume (3) is true.

$$\mathbf{P}\left(\bigcup_{i=1}^{n+1} A_i\right) \leq \mathbf{P}\left(\bigcup_{i=1}^{n} A_i\right) + \mathbf{P}(A_{n+1}) \text{ by (2)}$$

$$\leq \sum_{i=1}^{n} \mathbf{P}(A_i) + \mathbf{P}(A_{n+1}) \text{ by (3)}$$

# **Colouring Problem**

**Theorem** Let  $A_1, A_2, \ldots, A_n$  be subsets of A and  $|A_i| = k$  for  $1 \le i \le n$ . If  $n < 2^{k-1}$  then there exists a partition  $A = R \cup B$  such that

$$A_i \cap R \neq \emptyset$$
 and  $A_i \cap B \neq \emptyset$   $1 \leq i \leq n$ .

[R] = Red elements and B = Blue elements.]

**Proof** Randomly colour A.

 $\Omega = \{R, B\}^A = \{f : A \to \{R, B\}\},$  uniform distribution.

$$BAD = \{ \exists i : A_i \subseteq R \text{ or } A_i \subseteq B \}.$$

Claim: P(BAD) < 1.

Thus  $\Omega \setminus BAD \neq \emptyset$  and this proves the theorem.

$$BAD(i) = \{A_i \subseteq R \text{ or } A_i \subseteq B\}$$

$$BAD = \bigcup_{i=1}^{n} BAD(i).$$

$$P(BAD) \leq \sum_{i=1}^{n} P(BAD(i))$$

$$= \sum_{i=1}^{n} \left(\frac{1}{2}\right)^{k-1}$$

$$= n/2^{k-1}$$

$$< 1.$$

#### **Explanation:**

For any set  $X \subseteq A$  and any  $x \in \{R, B\}^X$  we have

$$P(f(X) = x) = 2^{-|X|}.$$

- 1. The number of  $\omega$  such that f(X) = x is  $2^{|A|-|X|}$ .
- 2. f(X) = x just depends on the random colours assigned to X and so is *independent* of colours not in X.

### **Random Binary Search Trees**



A binary tree consists of a set of *nodes*, one of which is the *root*.

Each node is connected to 0,1 or 2 nodes below it and every node other than the root is connected to exactly one node above it. The root is the highest node.

The depth of a node is the number of edges in its path to the root.

The depth of a tree is the maximum over the depths of its nodes.

Starting with a tree  $T_0$  consisting of a single root r, we grow a tree  $T_n$  as follows:

The n'th particle starts at r and flips a fair coin. It goes left (L) with probability 1/2 and right (R) with probability 1/2.

It tries to move along the tree in the chosen direction. If there is a node below it in this direction then it goes there and continues its random moves. Otherwise it creates a new node where it wanted to move and stops.

Let  $D_n$  be the depth of this tree.

Claim: for any  $t \geq 0$ ,

$$P(D_n \ge t) \le (n2^{-(t-1)/2})^t$$
.

**Proof** The process requires at most  $n^2$  coin flips and so we let  $\Omega = \{L,R\}^{n^2}$  — most coin flips will not be needed most of the time.

$$DEEP = \{D_n \ge t\}.$$

For  $P \in \{L, R\}^t$  and  $S \subseteq [n], |S| = t$  let

 $DEEP(P,S) = \{ \text{the particles } S = \{s_1, s_2, \dots, s_t \}$  follow P in the tree i.e. the first i moves of  $s_i$  are along P,  $1 \le i \le t \}$ .

$$DEEP = \bigcup_{P} \bigcup_{S} DEEP(P, S).$$



 $S = \{4,8,11,17,25\}$ 

t=5 and DEEP(P,S) occurs if

- 4 goes L...
- 8 goes LR...
- 11 goes LRR...
- 17 goes LRRL...
- 25 goes LRRLR...

$$P(DEEP) \leq \sum_{P} \sum_{S} P(DEEP(P, S))$$

$$= \sum_{P} \sum_{S} 2^{-(1+2+\cdots+t)}$$

$$= \sum_{P} \sum_{S} 2^{-t(t+1)/2}$$

$$= 2^{t} {n \choose t} 2^{-t(t+1)/2}$$

$$\leq 2^{t} n^{t} 2^{-t(t+1)/2}$$

$$= (n2^{-(t-1)/2})^{t}.$$

So if we put  $t = A \log_2 n$  then

$$P(D_n \ge A \log_2 n) \le (2n^{1-A/2})^{A \log_2 n}$$

which is very small, for A > 2.