Discrete Probability

 Ω is a finite or countable set - called the Probability Space

 $P: \Omega \rightarrow R^+$.

 $\sum_{\omega \in \Omega} P(\omega) = 1.$

If $\omega \in \Omega$ then $P(\omega)$ is the probability of ω .

Fair Coin $\Omega = \{H, T\}, \; P(H) = P(T) = 1/2.$

Dice

 $\Omega = \{1, 2, \ldots, 6\}$, ${\rm P}(i) = 1/6,\,\, 1\leq i\leq 6$.

Both are examples of a uniform distribution:

$$
\mathrm{P}(\omega)=\frac{1}{|\Omega|}\qquad\forall\omega\in\Omega.
$$

Geometric or number of Bernouilli trials Geometri or number of Bernouilli trials until success

 $\Omega = \{1, 2, \dots, \}, P(k) = (1-p)^{k-1}p, \quad k \in \Omega.$

Repeat "experiment" until success $- k$ is the total number of trials.

 p is the probability of success.

 $P(S) = p, P(FS) = p(1 - p),$ $P(FFS) = p^2(1-p), P(FFFS) = (1-p)^5p...$

Note that

$$
\sum_{k=1}^{\infty} (1-p)^{k-1}p = \frac{p}{1-(1-p)} = 1.
$$

Roll Two Dice

Probability Space 1: $\Omega = [6]^2 = \{(x_1, x_2): 1 \le x_1, x_2 \le 6\}$

 $P(x_1, x_2) = 1/36$ for all x_1, x_2 .

Probability Space 2: $\Omega = \{2, 3, 4, , \ldots, 12\}$ $P(2) = 1/36, P(3) = 2/36, P(4) = 3/36,$ \ldots , $P(12) = 1/36$.

Events $A \subseteq \Omega$ is called an event.

$$
\mathbf{P}(A) = \sum_{\omega \in A} \mathbf{P}(\omega).
$$

(i) Two Dice $A = \{x_1 + x_2 = 7\}$ where x_i is the value of dice i.

ä,

 $A = \{(1,6), (2,5), \ldots, (6,1)\}\$ and so $P(A) = 1/6$

(ii) Pennsylvania Lottery

Choose 7 numbers I from $[80]$. The state randomly chooses $J \subseteq [80]$, $|J| = 11$.

$$
WIN = \{J: J \supseteq I\}.
$$

 $\Omega = \{11$ element subsets of [80]} with uniform distribution.

 $|WIN| =$ no. subsets which contain $I - \binom{73}{4}$.

$$
P(WIN) = \frac{\binom{73}{4}}{\binom{80}{11}} = \frac{\binom{11}{7}}{\binom{80}{7}}
$$

=
$$
\frac{9}{86637720} \approx \frac{1}{9,626,413}.
$$

Poker

ards at random. It is a random at random. It is a random in the set of the set of the set of the set of the se , which is a set of the set of \mathcal{L} distribution.

(i) Triple -3 cards of same value e.g. $Q, Q, Q, 7, 5$. ${\rm P}({\rm Triple}) = (13 \times 4 \times 48 \times 44/(2))$ \sim \sim) :021.

(ii) Full House $-$ triple plus pair e.g. $J,J,J,7,7$. ${\rm P}(\mathsf{FullHouse}) = (13 \times 4 \times 12 \times 6) / \big($ ⁵² \sim \sim

(iii) Four of kind $-$ e.g. $9,9,9,9,$. ${\rm P}(\text{\small{Four of Kind}}) = (13 \times 48) / \big($ $)= 1/16660.$ Birthday Paradox $\Omega = [n]^k$ – uniform distribution, $|\Omega| = n^k$. $D = \{\omega \in \Omega$; symbols are distinct}. $P(D) =$ $n(n-1)(n-2)...(n-k+1)$ n^k .

 $n = 365, k = 26$ - birthdays of 26 randomly chosen people.

 $P(D)$ < .5 i.e. probability 26 randomly chosen people have distinct birthdays is $<$.5. (Assumes people are born on random days).

Reliability through redundancy: space ship has 7 independent on board computers.

The navigational decisions are reached by a majority vote of the seven computers.

If each computer is correct with probability $p =$:99, what is the probability the system gives a correct answer?

$$
\sum_{i=4}^{7} {7 \choose i} p^i (1-p)^{7-i} = .9999996583\dots
$$