Pigeon-hole principle

A function $f : A \to X$ is 1-1 (or an *injection*) if whenever $x \neq y$ then $f(x) \neq f(y)$.

Theorem 1 If $A = \{a_1, a_2, \dots, a_r\}$ then the number of injections from A to X is p(n, r). For r > n it is 0.

Proof To each function $f : A \to X$ we associate the sequence b_1, b_2, \ldots, b_r where $b_i = f(a_i), i = 1, 2, \ldots, r$. f is an injection iff the sequence $b_1b_2 \cdots b_r$ has no repetitions.

The (trivial) case r > n is called the *pigeon-hole principle*.

Informally: If more than n pigeons are to be placed in n pigeon-holes, at least one hole will end up with more than one pigeon. (For r > nthe number of injections from A to X is 0.)

Example 1: There are at least 10⁴ people in China who have exactly the same number of strands of hair.

Proof. A human may have $0 \le x \le 10^5 - 1$ hair strands. There are more then 10^9 people living in China. Label a 'hole' by the number of hair strands and put a person in hole *i* if she/he has exactly *i* hair strands. There must be at least one hole with 10^4 people or more people. Indeed, assume to the contrary, that this is not true. Then the total the number of people in China is at most $10^4 \times 10^5 = 10^9$, a contradiction.

Observe, that we used a more general version of the *pigeon-hole principle*, which informally says the following. If more than nk pigeons are to be placed in n pigeon-holes, one hole will end up with more than k pigeons. **Example 2.** Positive integers n and k are coprime if their largest common divisor is 1. If we take an arbitrary subset A of n + 1 integers from the set $[2n] = \{1, ..., 2n\}$ it will contain a pair of co-prime integers.

If we take the n even integers between 1 and 2n. This set of n elements does not contain a pair of mutually prime integers. Thus we cannot replace the n+1 by n in the statement. We say that the statement is *tight*.

Define the holes as sets $\{1,2\}, \{3,4\}, \dots, \{2n-1,2n\}$. Thus *n* holes are defined. If we place the n + 1 integers of *A* into their corresponding holes – by the pigeon-hole principle – there will be a hole, which will contains two numbers. This means, that *A* has to contain two consecutive integers, say, *x* and x + 1. But two such numbers are always co-prime. If some integer $y \neq 1$ divides *x*, i.e., x = ky, then x + 1 = ky + 1 and this is not divisible by *y*.

We have two disks, each partitioned into 200 sectors of the same size. 100 of the sectors of Disk 1 are coloured Red and 100 are colored Blue. The 200 sectors of Disk 2 are arbitrarily coloured Red and Blue.

It is always possible to place Disk 2 on top of Disk 1 so that the centres coincide, the sectors line up and at least 100 sectors of Disk 2 have the same colour as the sector underneath them.

Fix the position of Disk 1. There are 200 positions for Disk 2 and let q_i denote the number of matches if Disk 2 is placed in position i. Now for each sector of Disk 2 there are 100 positions i in which the colour of the sector underneath it coincides with its own. Therefore

 $q_1 + q_2 + \dots + q_{200} = 200 \times 100 \quad (1)$ and so there is an i such that $q_i \ge 100$.

Explanation of (1).

Consider 0-1 200 × 200 matrix A(i,j) where A(i,j) = 1 iff sector j lies on top of a sector with the same colour when in position i.

Row i of A has q_i 1's and column j of A has 100 1's. The LHS of (1) counts the number of 1's by adding rows and the RHS counts the number of 1's by adding columns. **Theorem 2** (Erdős-Szekeres) An arbitrary sequence of integers $(a_1, a_2, \ldots, a_{k^2+1})$ contains a monotone subsequence of length k + 1.

Proof. Let $(a_i, a_i^1, a_i^2, \ldots, a_i^{\ell-1})$ be the longest monotone increasing subsequence of (a_1, \ldots, a_{k^2+1}) that starts with a_i $(1 \le i \le k^2+1)$, and let $\ell(a_i)$ be its length.

If for some $1 \leq i \leq k^2 + 1$, $\ell(a_i) \geq k + 1$, then $(a_i, a_i^1, a_i^2, \dots, a_i^{l-1})$ is a monotone increasing subsequence of length $\geq k + 1$.

So assume that $\ell(a_i) \leq k$ holds for every $1 \leq i \leq k^2 + 1$.

Label a 'hole' by the length of a sequence and place the *monotone increasing* subsequence $(a_i, a_i^1, a_i^2, \ldots, a_i^{\ell-1})$ into the hole ℓ , which is its length. There are $k^2 + 1$ subsequences and $\leq k$ non-empty holes (different lengths), so by the pigeon-hole principle there will be (at least) k + 1 sequences of the same length ℓ^* . Let $a_{i_1}, a_{i_2}, \ldots, a_{i_{k+1}}$ be the first entries of these sequences. Then $a_{i_1} \geq a_{i_2} \geq \cdots \geq a_{i_{k+1}}$ holds. Indeed, assume to the contrary that $a_{i_m} < a_{i_n}$ for some $1 \leq m < n \leq k + 1$. Then $a_{i_m} \leq a_{i_n} \leq a_{i_n} \leq a_{i_n}^2 \leq \cdots \leq a_{i_n}^{\ell^*-1}$, i.e., $\ell(a_{i_m}) \geq \ell^* + 1$, a contradiction.

Let P_1, P_2, \ldots, P_n be n points in the unit square $[0,]^2$. We will show that there exist $i, j, k \in [n]$ such that the triangle $P_i P_j P_k$ has area

$$\leq rac{1}{2(\lfloor \sqrt{(n-1)/2}
floor)^2} \sim rac{1}{n}$$

for large *n*.

Let $m = \lfloor \sqrt{(n-1)/2} \rfloor$ and divide the square up into $m^2 < \frac{n}{2}$ subsquares. By the pigeonhole principle, there must be a square containing \geq 3 points. Let 3 of these points be $P_i P_j P_k$. The area of the corresponding triangle is at most one half of the area of an individual square.

