Grid path problems

A monotone path is made up of segments $(x, y) \to (x + 1, y)$ or $(x, y) \to (x, y + 1)$.

 $PATHS((a, b) \rightarrow (c, d)) = \{$ monotone paths from (a, b) to (c, d) . We drop the $(a, b) \rightarrow$ for paths starting at $(0,0)$. We consider 3 questions: Assume $a, b \ge 0$.

1. How large is $\mathsf{PATHS}(a, b)$?

2. Assume $a < b$. Let PATHS_> (a, b) be the set of paths in $PATHS(a, b)$ which do not touch the line $x = y$ except at $(0,0)$. How big is $PATHS_>(a, b)$?

3. Assume $a \leq b$. Let PATHS_> (a, b) be the set of paths in $PATHS(a, b)$ which do not pass through points with $x > y$. How big is $PATHS_{>}(a, b)$?

1. STRINGS $(a, b) = \{x \in \{\mathsf{R}, \mathsf{U}\}^* : x \text{ has } a \mathsf{R}'s\}$ and $b \cup s$. *

Natural bijection between $PATHS(a, b)$ and $STRINGS(a, b)$

Path moves to Right, add R to sequence. Path goes up, add U to sequence.

So

 $|$ PATHS $(a, b)| = |$ STRINGS $(a, b)| = {a + b \choose a}$

since to define a string we have state which of the $a + b$ places contains an R.

 ${}^*{R,U}^*$ = set of strings of R's and U's

2. Every path in $\mathsf{PATHS}_{>}(a, b)$ goes through (0,1). So

$$
|\mathsf{PATHS}_{>}(a,b)| = |\mathsf{PATHS}((0,1) \to (a,b))|
$$

- $|\mathsf{PATHS}_{\not>(}(0,1) \to (a,b))|$.

Now

$$
|\mathsf{PATHS}((0,1) \to (a,b))| = {a+b-1 \choose a}
$$

and

$$
PATING\nless((0,1) \to (a,b))| =
$$

$$
|PATHS((1,0) \to (a,b))| = {a+b-1 \choose a-1}.
$$

We explain the first equality momentarily. Thus

$$
|\mathsf{PATHS}_{>}(a, b)| = {a + b - 1 \choose a} - {a + b - 1 \choose a - 1} \\
= \frac{b - a}{a + b} {a + b \choose a}.
$$

4

Suppose $P \in$ PATHS_{χ}((0, 1) \rightarrow (a, b)). We define $P' \in$ PATHS $((1, 0) \rightarrow (a, b))$ in such a way that

 $P \to P$ is a dijection.

Let (c, c) be the first point of P, which lies on the line $L = \{x = y\}$ and let S denote the initial segment of P going from $(0,1)$ to (c,c) .

 P is obtained from P by deleting S and replacing it by its reflection S in L .

To show that this defines a bijection, observe that if $P' \in \mathsf{PATHS}((1, 0) \to (a, b))$ then a similarly defined reverse reflection yields a $P \in$ PATHS $\mathcal{L}((0, 1) \rightarrow (a, b))$.

 $\overline{6}$

3. Suppose $P \in \mathsf{PATHS}_{\geq}(a, b)$. We define $P'' \in$ PATHS> $(a, b + 1)$ in such a way that

 $P \to P$ " is a bijection.

Thus

$$
|\mathsf{PATHS}_{\ge}(a, b)| = \frac{b - a + 1}{a + b + 1} {a + b + 1 \choose a}.
$$

In particular

$$
|PATHS_>(a, a)| = \frac{1}{2a+1} {2a+1 \choose a} = \frac{1}{a+1} {2a \choose a}.
$$

The final expression is called a Catalan Number.

The bijection

Given P we obtain P " by raising it vertically one position and then adding the segment $(0, 0) \rightarrow (0, 1).$

More precisely, if

$$
P = (0,0), (x_1,y_1), (x_2,y_2), \ldots, (a,b)
$$

then

 $P'' = (0,0), (0,1), (x_1, y_1 + 1), \ldots, (a, b + 1).$

This is clearly a 1-1 onto function between $PATHS_{>}(a, b)$ and $PATHS_{>}(a, b + 1)$.

