Ramsey's Theorem

Suppose we 2-colour the edges K_6 of Red and Blue. There must be either a Red triangle or a Blue triangle.

This is not true for K_5 .

There are 3 edges of the same colour incident with vertex 1, say (1,2), (1,3), (1,4) are Red. Either (2,3,4) is a blue triangle or one of the edges of (2,3,4) is Red, say (2,3). But the latter implies (1,2,3) is a Red triangle.

Ramsey's Theorem

For all positive integers k, ℓ there exists $R(k, \ell)$ such that if $N \ge R(k, \ell)$ and the edges of K_N are coloured Red or Blue then then either there is a "Red k -clique" or there is a "Blue ℓ -clique.

A clique is a complete subgraph and it is Red if all of its edges are coloured red etc.

$$
R(1,k) = R(k,1) = 1\nR(2,k) = R(k,2) = k
$$

Theorem 1

$$
R(k,\ell)\leq R(k,\ell-1)+R(k-1,\ell).
$$

Proof Let $N = R(k, \ell - 1) + R(k - 1, \ell)$.

 $V_R = \{(x : (1, x) \text{ is coloured Red}\} \text{ and } V_B = \{(x :$ $(1, x)$ is coloured Blue}.

 $|V_R| \geq R(k - 1, \ell)$ or $|V_B| \geq R(k, \ell - 1)$. **Since**

$$
|V_R| + |V_B| = N - 1
$$

= R(k, l - 1) + R(k - 1, l) - 1.

Suppose for example that $|V_R| \ge R(k - 1, \ell)$. Then either V_R contains a Blue ℓ -clique – done, or it contains a Red $k - 1$ -clique K. But then $K \cup \{1\}$ is a Red k-clique.

Similarly, if $|V_B|\ge R(k, \ell-1)$ then either V_B contains a Red k-clique – done, or it contains a Blue $\ell - 1$ clique L and then $L \cup \{1\}$ is a Blue ℓ -clique. \Box

Theorem 2

$$
R(k,\ell)\leq {k+\ell-2\choose k-1}.
$$

Proof Induction on $k + \ell$. True for $k + \ell \le 5$ say. Then

$$
R(k, \ell) \leq R(k, \ell - 1) + R(k - 1, \ell) \n\leq \binom{k + \ell - 3}{k - 1} + \binom{k + \ell - 3}{k - 2} \n= \binom{k + \ell - 2}{k - 1}.
$$

So, for example,

$$
R(k,k) \leq {2k-2 \choose k-1} \leq 4^k
$$

 \Box

Theorem 3

$R(k, k) > 2^{k/2}$

Proof We must prove that if $n \leq 2^{k/2}$ then there exists a Red-Blue colouring of the edges of K_n which contains no Red k -clique and no Blue k -clique. We can assume $k \geq 4$ since we know $R(3,3) = 6$.

We show that this is true with positive probability in a random Red-Blue colouring. So let Ω be the set of all Red-Blue edge colourings of K_n with uniform distribution. Equivalently we independently colour each edge Red with probability 1/2 and Blue with probability 1/2.

Let \mathcal{E}_R be the event: {There is a Red k-clique} and \mathcal{E}_B be the event: {There is a Blue k-clique}.

We show

 $\Pr(\mathcal{E}_R \cup \mathcal{E}_B) < 1.$

Let $C_1, C_2, \ldots, C_N, \, N = \big($ be the vertices of the N k-cliques of K_n . Let $\mathcal{E}_{R,j}$ be the event: $\{C_j$ is Red}. Now

$$
\begin{array}{rcl}\n\Pr(\mathcal{E}_R \cup \mathcal{E}_B) & \leq & \Pr(\mathcal{E}_R) + \Pr(\mathcal{E}_B) \\
& = & 2\Pr(\mathcal{E}_R) \\
& = & 2\Pr\left(\bigcup_{j=1}^N \mathcal{E}_{R,j}\right) \\
& \leq & 2\sum_{j=1}^N \Pr(\mathcal{E}_{R,j}) \\
& = & 2\sum_{j=1}^N \left(\frac{1}{2}\right)^{\binom{k}{2}} \\
& = & 2\binom{n}{k} \left(\frac{1}{2}\right)^{\binom{k}{2}} \\
& \leq & 2\frac{n^k}{k!} \left(\frac{1}{2}\right)^{\binom{k}{2}} \\
& \leq & 2\frac{2^{k^2/2}}{k!} \left(\frac{1}{2}\right)^{\binom{k}{2}} \\
& = & \frac{2^{1+k/2}}{k!} \\
& & 1.\n\end{array}
$$