Matchings

A matching M of a graph G = (V,FE) is a set of
edges, no two of which are incident to a common ver-
tex.
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An M-alternating path joining 2 M-unsaturated ver-
tices is called an M-augmenting path.



M is a maximum matching of G if no matching M’
has more edges.

Theorem 1 M is a maximum matching iff M admits
no M -augmenting paths.

Proof Suppose M has an augmenting path P =

(ag,b1,a1,... ,0,bp41) Where e; = (a;—1,b;) ¢
M, 1<i<k4+1landf; = (bj,a;) e M, 1<i<k
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M =M —{f1,f2,--., fx} +{e1.e2, .- s ept1}-



o |M'| = |M|+ 1.
e )’ is a matching

Forx € V let dy;(«) denote the degree of x in match-
ing M, So dy;(x)is 0 or1.

dpr(x) r & {ag,b1,... ,bp4+1}
dypr(x) = ¢ dp(z) z € {by,...,a}
dy(z)+1 z € {ao,bp+1}

So if M has an augmenting path it is not maximum.



Suppose M is not a maximum matching and |M'| > |M|. Con-
sider H = G[MVM'l where MVM' = (M \ M") U (M'\ M)
is the set of edges in exactly one of M, M’.

Maximum degree of H is 2 — < 1 edge from M or M'. So H is
a collection of vertex disjoint alternating paths and cycles.
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|M'| > |M| impplies that there is at least one path of type (d).

Such a path is M-augmenting O



Bipartite Graphs

Let G = (AU B, E) be a bipartite graph with biparti-
tion A, B.

For S C Alet N(S) =4{be B: da € S, (a,b) €

aj bl
a, b>

a3 b
a X b4
N({a,.a; })={b ;b b, }

Clearly, | M| < |A|, |B| for any matching M of G.
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Hall’'s Theorem

Theorem 2 G contains a matching of size | A| iff

IN(S)| > |S] vS C A. (1)
aq bl
a, b,
ds bs
d b4

N({al, an, CL3}) = {bl, 1)2} and soatmost2ofaq, an, as
can be saturated by a matching.



Only if: Suppose M = {(a,#(a)) : a € A} satu-

rates A.
1 P (2) € N(©S)
2
S o P +non-matching
edges
3 @ (1) e N(S)
4 ®(3) € N(S)

IN(S) = Ho(s) 1 s € S}
= [5]
and so (1) holds.

If: Let M = {(a,¢(a)) : ac A’} (A’ C A)is a max-
imum matching. Suppose ag € A is M-unsaturated.

We show that (1) fails.
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Let
A1 = {a € A : such that a is reachable from ag by

an M-alternating path.}
B1 = {b € B : such that b is reachable from ag by an

M-alternating path.}




e B4 is M-saturated else there exists an M -augmenting
path.

e lfac A1\ {ap} then ¢(a) € B;.

O e 4’3 O ﬁ/\/ C

d (p(a) d

e If b € B1 then ¢_1(b) € Aq \ {ao}.

So
|B1| = |A1| — 1.
e N(A1) C By
o Com — © —O °
ao b a
So

[N(A1)| = [A1] -1

and (1) fails to hold.
10



Marriage Theorem

Theorem 3 Suppose G = (A U B, E) is k-regular.
(k> 1)ie dno(v) =k forallve AU B. Then G has
a perfect matching.

Proof
k|A| = |E| = k|B|
and so |A| = |B|.
Suppose S C A. Let m be the number of edges inci-
dent with S. Then
k|S| = m < k|N(S)|.

So (1) holds and there is a matching of size |A| i.e. a
perfect matching.
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Edge Covers

A set of vertices X C Visa coveringof G = (V, E)

if every edge of E contains at least one endpoint in
X.

{® 1 is acovering

Lemma1 /f X js a covering and M is a matching
then | X| > | M|.

Proof Let M = {(a1,b;) : 1 < i < k}. Then
| X| > |M]|sincea; € Xorb; € X forl <i<kand
ai,...,bg are distinct. O
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Konig’s Theorem

Let (G) be the maximum size of a matching.
Let 3(G) be the minimum size of a covering.
Then

pu(G) < B(G).

Theorem 4 If G is bipartite then 1(G) = B(G).

Proof Let M be a maximum matching.

Let Sg be the M-unsaturated vertices of A.

Let S O Sp be the A-vertices which are reachable
from S by M-alternating paths.

Let T" be the M-neighbours of S\ Sp.
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S S S, S S s S

let X = (A\ S)UT.
'T'| = |S'\ Sp|- The remaining edges of M cover A\ S
exactly once.

e X is a cover.

There are no edges (z,y) wherez € Sandy € B\T.
Otherwise, since y is M-saturated (no M-augmenting
paths) the M -neightbour of y would have to be in S,
contradicting y ¢ T'. O
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