Matchings

A matching M of a graph G = (V, E) is a set of edges, no two of which are incident to a common vertex.

Perfect Matching

M-alternating path

An M-alternating path joining 2 M-unsaturated vertices is called an M-augmenting path.

M is a maximum matching of G if no matching M' has more edges.

Theorem 1 M is a maximum matching iff M admits no M-augmenting paths.

Proof Suppose *M* has an augmenting path $P = (a_0, b_1, a_1, \dots, a_k, b_{k+1})$ where $e_i = (a_{i-1}, b_i) \notin M$, $1 \leq i \leq k+1$ and $f_i = (b_i, a_i) \in M$, $1 \leq i \leq k$.

 $M' = M - \{f_1, f_2, \dots, f_k\} + \{e_1, e_2, \dots, e_{k+1}\}.$

- |M'| = |M| + 1.
- M' is a matching

For $x \in V$ let $d_M(x)$ denote the degree of x in matching M, So $d_M(x)$ is 0 or 1.

$$d_{M'}(x) = \left\{ egin{array}{ll} d_M(x) & x
ot\in\{a_0,b_1,\ldots,b_{k+1}\}\ d_M(x) & x\in\{b_1,\ldots,a_k\}\ d_M(x)+1 & x\in\{a_0,b_{k+1}\} \end{array}
ight.$$

So if M has an augmenting path it is not maximum.

Suppose *M* is not a maximum matching and |M'| > |M|. Consider $H = G[M\nabla M']$ where $M\nabla M' = (M \setminus M') \cup (M' \setminus M)$ is the set of edges in *exactly* one of *M*, *M'*.

Maximum degree of *H* is $2 - \leq 1$ edge from *M* or *M'*. So *H* is a collection of vertex disjoint alternating paths and cycles.

|M'| > |M| impplies that there is at least one path of type (d).

Such a path is *M*-augmenting

Bipartite Graphs

Let $G = (A \cup B, E)$ be a bipartite graph with bipartition A, B.

For $S \subseteq A$ let $N(S) = \{b \in B : \exists a \in S, (a, b) \in E\}$.

 $N(\{a_{2}, a_{3}\}) = \{b_{1}b_{3}b_{4}\}$

Clearly, $|M| \leq |A|, |B|$ for any matching M of G.

Hall's Theorem

Theorem 2 *G* contains a matching of size |A| iff

```
|N(S)| \ge |S| \qquad \forall S \subseteq A.  (1)
```


 $N(\{a_1, a_2, a_3\}) = \{b_1, b_2\}$ and so at most 2 of a_1, a_2, a_3 can be saturated by a matching.

Only if: Suppose $M = \{(a, \phi(a)) : a \in A\}$ saturates A.

and so (1) holds.

If: Let $M = \{(a, \phi(a)) : a \in A'\}$ $(A' \subseteq A)$ is a maximum matching. Suppose $a_0 \in A$ is *M*-unsaturated. We show that (1) fails.

Let

 $A_1 = \{a \in A : \text{such that } a \text{ is reachable from } a_0 \text{ by} an M-alternating path.}\}$

 $B_1 = \{b \in B : \text{such that } b \text{ is reachable from } a_0 \text{ by an } M\text{-alternating path.}\}$

• B_1 is M-saturated else there exists an M-augmenting path.

• If $a \in A_1 \setminus \{a_0\}$ then $\phi(a) \in B_1$.

• If $b \in B_1$ then $\phi^{-1}(b) \in A_1 \setminus \{a_0\}$.

$$|B_1| = |A_1| - 1.$$

• $N(A_1) \subseteq B_1$ a_0 b aSo

 $|N(A_1)| = |A_1| - 1$

and (1) fails to hold.

10

Marriage Theorem

Theorem 3 Suppose $G = (A \cup B, E)$ is *k*-regular. $(k \ge 1)$ i.e. $d_G(v) = k$ for all $v \in A \cup B$. Then *G* has a perfect matching.

Proof

$$k|A| = |E| = k|B|$$

and so |A| = |B|.

Suppose $S \subseteq A$. Let *m* be the number of edges incident with *S*. Then

 $k|S| = m \le k|N(S)|.$

So (1) holds and there is a matching of size |A| i.e. a perfect matching.

Edge Covers

A set of vertices $X \subseteq V$ is a *covering* of G = (V, E) if every edge of E contains at least one endpoint in X.

Lemma 1 If X is a covering and M is a matching then $|X| \ge |M|$.

Proof Let $M = \{(a_1, b_i) : 1 \le i \le k\}$. Then $|X| \ge |M|$ since $a_i \in X$ or $b_i \in X$ for $1 \le i \le k$ and a_1, \ldots, b_k are distinct.

Konig's Theorem

Let $\mu(G)$ be the maximum size of a matching. Let $\beta(G)$ be the minimum size of a covering. Then

 $\mu(G) \leq \beta(G).$

Theorem 4 If G is bipartite then $\mu(G) = \beta(G)$.

Proof Let *M* be a maximum matching. Let S_0 be the *M*-unsaturated vertices of *A*. Let $S \supseteq S_0$ be the *A*-vertices which are reachable from *S* by *M*-alternating paths. Let *T* be the *M*-neighbours of $S \setminus S_0$.

Let $X = (A \setminus S) \cup T$. • |X| = |M|. $|T| = |S \setminus S_0|$. The remaining edges of M cover $A \setminus S$ exactly once.

• X is a cover.

There are no edges (x, y) where $x \in S$ and $y \in B \setminus T$. Otherwise, since y is M-saturated (no M-augmenting paths) the M-neightbour of y would have to be in S, contradicting $y \notin T$.