Eulerian Graphs

An *Eulerian cycle* of a graph G = (V, E) ia closed walk which uses each edge $e \in E$ exactly once.

The walk using edges a, b, c, d, e, f, g, h, j, k in this order is an Eulerian cycle. **Theorem 1** A connected graph is Eulerian i.e. has an Eulerian cycle, iff it has no vertex of odd degree.

Proof Suppose $W = (v_1, v_2, \dots, v_m, v_1)$ (m = |E|) is an Eulerian cycle. Fix $v \in V$. Whenever W visits v it enters through a new edge and leaves through a new edge. Thus each visit requires 2 new edges. Thus the degree of v is even.

The converse is proved by induction on |E|. The result is true for |E| = 3. The only possible graph is a triangle.

Assume $|E| \ge 4$. *G* is not a tree, since it has no vertex of degree 1. Therefore it contains a cycle *C*. Delete the edges of *C*. The remaining graph has components K_1, K_2, \ldots, K_r .

Each K_i is connected and is of even degree – deleting C removes 0 or 2 edges incident with a given $v \in V$. Also, each K_i has strictly less than |E| edges. So, by induction, each K_i has an Eulerian cycle, C_i say.

We create an Eulerian cycle of G as follows: let $C = (v_1, v_2, \ldots, v_s, v_1)$. Let v_{i_t} be the first vertex of C which is in K_t . Assume w.l.o.g. that $i_1 < i_2 < \cdots < i_r$.

$$W = (v_1, v_2, \dots, v_{i_1}, C_1, v_{i_1}, \dots, v_{i_2}, C_2, v_{i_2}, \dots, v_{i_r}, C_r, v_{i_r}, \dots, v_1)$$

is an Eulerian cycle of G.

Hamilton Cycles

A Hamilton Cycle of a graph G = (V, E) is a cycle which goes through each vertex (once).

A graph is called *Hamiltonian* if it contains a Hamilton cycle.

Hamiltonian Graph

Non–Hamiltonian Graph Petersen Graph **Lemma 1** Let G = (V, E) and |V| = n. Suppose $x, y \in V$, $e = (x, y) \notin E$ and $d(x) + d(y) \ge n$. Then

G + e is Hamiltonian $\leftrightarrow G$ is Hamiltonian.

Proof

← Trivial.

→ Suppose G + e has a Hamilton cycle H. If $e \notin H$ then $H \subseteq G$ and G is Hamiltonian.

Suppose $e \in H$. We show that we can find another Hamilton cycle in G + e which does not use e.

 $H = (x = v_1, v_2, \dots, v_n = y, x).$ $S = \{i : (x, v_{i+1}) \in E\}, T = \{i : (y, v_i) \in E\}.$ $S \subseteq \{1, 2, \dots, n-2\}, T \subseteq \{2, 3, \dots, n-1\}.$ $|S| + |T| \ge n \text{ and } |S \cup T| \le n-1. \text{ Thus}$ $|S \cap T| = |S| + |T| - |S \cup T| \ge 1$ and so $\exists 1 \ne k \in S \cap T$ and then $H' = (w, w_0, w_0, w_0, w_0, w_0, w_0, w_0)$

 $H' = (v_1, v_2, \dots, v_k, v_n, v_{n-1}, \dots, v_{k+1}, v_1)$ is a Hamilton cycle of *G*.

7

Bondy-Chvatál Closure of a graph

begin $\widehat{G} := G$ while $\exists (x, y) \notin E$ with $d_{\widehat{G}}(x) + d_{\widehat{G}}(y) \ge n$ do begin $\widehat{G} := \widehat{G} + (x, y)$ end Output \widehat{G} end

The graph \hat{G} is called the closure of G.

Lemma 2 \hat{G} is independent of the order in which edges are added i.e. it depends only on G.

Proof Suppose algorithm is run twice to obtain $G_1 = G + e_1 + e_2 + \dots + e_k$ and $G_2 = G + f_1 + f_2 + \dots + f_\ell$. We show that $\{e_1, e_2, \dots, e_k\} = \{f_1, f_2, \dots, f_\ell\}$.

Suppose not. Let $t = \min\{i : e_i \notin G_2\}, e_t = (x, y)$ and $G' = G + e_1 + e_2 + \dots + e_{t-1}$. Then

$$d_{G_2}(x) + d_{G_2}(y) \ge d_{G'}(x) + d_{G'}(y)$$

 $\ge n$

since e_t was added to G'.

But then e_t should have been added to G_2 – contradiction.

- \hat{G} Hamiltonian $\Rightarrow G$ is Hamiltonian.
- \hat{G} complete \Rightarrow *G* is Hamiltonian.
- $\delta(G) \ge n/2 \Rightarrow G$ is Hamiltonian.

Second statement is due to Bondy and Murty. Third statement is due to Dirac.