

- A tree is a graph which is
- (a) Connected and
- (b) has no cycles (*acyclic*).

Lemma 1 Let the components of G be C_1, C_2, \ldots, C_r , Suppose $e = (u, v) \notin E$, $u \in C_i$, $v \in C_j$.

(a)
$$i = j \Rightarrow \omega(G + e) = \omega(G)$$
.

(b)
$$i \neq j \Rightarrow \omega(G + e) = \omega(G) - 1.$$

(a)

Proof Every path *P* in G + e which is not in *G* must contain *e*. Also,

$$\omega(G+e) \le \omega(G).$$

Suppose

 $(x = u_0, u_1, \dots, u_k = u, u_{k+1} = v, \dots, u_{\ell} = y)$

is a path in G + e that uses e. Then clearly $x \in C_i$ and $y \in C_j$.

(a) follows as now no new relations $x \sim y$ are added.

(b) Only possible new relations $x \sim y$ are for $x \in C_i$ and $y \in C_j$. But $u \sim v$ in G + e and so $C_i \cup C_j$ becomes (only) new component. **Lemma 2** G = (V, E) is acyclic (forest) with (tree) components C_1, C_2, \ldots, C_k . $|V| = n. e = (u, v) \notin E, u \in C_i, v \in C_j$.

- (a) $i = j \Rightarrow G + e$ contains a cycle.
- (b) $i \neq j \Rightarrow G + e$ is acyclic and has one less component.
- (c) G has n k edges.

(a) $u, v \in C_i$ implies there exists a path $(u = u_0, u_1, \dots, u_\ell = v)$ in G.

So G + e contains the cycle $u_0, u_1, \ldots, u_{\ell}, u_0$.

(b) Suppose G + e contains the cycle C. $e \in C$ else C is a cycle of G.

 $C = (u = u_0, u_1, \dots, u_\ell = v, u_0).$

But then *G* contains the path $(u_0, u_1, \ldots, u_\ell)$ from *u* to v – contradiction.

The drop in the number of components follows from Lemma 1.

The rest follows from (c) Suppose $E = \{e_1, e_2, \dots, e_r\}$ and $G_i = (V, \{e_1, e_2, \dots, e_i\})$ for $0 \le i \le r$.

Claim: G_i has n - i components.

Induction on *i*.

i = 0: G_0 has no edges.

i > 0: G_{i-1} is acyclic and so is G_i . It follows from part (a) that e_i joins vertices in distinct components of G_{i-1} . It follows from (b) that G_i has one less component than G_{i-1} .

End of proof of claim

Thus r = n - k (we assumed *G* had *k* components).

Corollary 1 If a tree T has n vertices then

(a) It has n - 1 edges.

(b) It has at least 2 vertices of degree 1, $(n \ge 2)$.

Proof (a) is part (c) of previous lemma. k = 1 since *T* is connnected.

(b) Let s be the number of vertices of degree 1 in T. There are no vertices of degree 0 – these would form separate components. Thus

 $2n-2=\sum_{v\in V}d_T(v)\geq 2(n-s)+s.$

So $s \ge 2$.

Theorem 1 Suppose |V| = n and |E| = n - 1. The following three statements become equivalent.

(a) G is connected.

(b) G is acyclic.

(c) G is a tree.

Let $E = \{e_1, e_2, \dots, e_{n-1}\}$ and $G_i = (V, \{e_1, e_2, \dots, e_i\})$ for $0 \le i \le n - 1$. (a) \Rightarrow (b): G_0 has *n* components and G_{n-1} has 1 component. Addition of each edge e_i must reduce the number of components by 1 – Lemma 2(b). Thus G_{i-1} acyclic implies G_i is acyclic. (b) follows as G_0 is acyclic.

(b) \Rightarrow (c): We need to show that G is connected. Since G_{n-1} is acyclic, $\omega(G_i) = \omega(G_{i-1}) - 1$ for each i – Lemma 2(b). Thus $\omega(G_{n-1}) = 1$.

 $(c) \Rightarrow (a)$: trivial.

Corollary 2 If v is a vertex of degree 1 in a tree T then T - v is also a tree.

ProofSuppose T has n vertices and n-1 edges.Then T - v has n - 1 vertices and n - 2 edges. Itacyclic and so must be a tree.

e is a *cut edge* of *G* if $\omega(G - e) > \omega(G)$.

Theorem 2 e = (u, v) is a cut edge iff e is not on any cycle of G.

Proof ω increases iff there exist $x \sim y \in V$ such that all walks from x to y use e.

Suppose there is a cycle (u, P, v, u) containing e. Then if $W = x, W_1, u, v, W_2, y$ is a walk from x to y using e, x, W_1, P, W_2, y is a walk from x to y that doesn't use e. Thus e is not a cut edge.

If *e* is not a cut edge then G-e contains a path *P* from *u* to v ($u \sim v$ in *G* and relations are maintained after deletion of *e*). So (v, u, P, v) is a cycle containing *e*.

Corollary 3 A connected graph is a tree iff every edge is a cut edge.

Corollary 4 Every finite connected graph *G* contains a spanning tree.

Proof Consider the following process: starting with *G*,

- 1. If there are no cycles **stop**.
- 2. If there is a cycle, delete an edge of a cycle.

Observe that (i) the graph remains connected – we delete edges of cycles. (ii) the process must terminate as the number of edges is assumed finite.

On termination there are no cycles and so we have a connected acyclic spanning subgraph i.e. we have a spanning tree.

Theorem 3 Let T be a spanning tree of G = (V, E), |V| = n. Suppose $e = (u, v) \in E \setminus T$.

- (a) T + e contains a unique cycle C(e).
- (b) $f \in C(e)$ implies that T + e f is a spanning tree of G.

Proof (a) Lemma 2(a) implies that T + e has a cycle *C*. Suppose that T + e contains another cycle $C' \neq C$. Let edge $g \in C' \setminus C$. T' = T + e - g is connected, has n - 1 edges. But T' contains a cycle *C*, contradicting Lemma 2(b).

(b) T + e - f is connected and has n - 1 edges. Therefore it is a tree.

Maximum weight trees

- G = (V, E) is a connected graph.
- $w: E \to \mathbf{R}$. w(e) is the *weight* of edge e.

For spanning tree T, $w(T) = \sum_{e \in T} w(e)$.

Problem: find a spanning tree of maximum weight.

17

Greedy Algorithm

Sort edges so that $E = \{e_1, e_2, \dots, e_m\}$ where

 $w(e_1) \geq w(e_2) \geq \cdots \geq w(e_m).$

begin $T := \emptyset$ for i = 1, 2, ..., m do begin if $T + e_i$ does not contain a cycle then $T \leftarrow T + e_i$ end Output Tend

Greedy always adds the maximum weight edge which does not make a cycle with previously chosen edges.

Theorem 4 The tree constructed by GREEDY has maximum weight.

Proof Let the edges of the greedy tree be $e_1^{\star}, e_2^{\star}, \ldots, e_{n-1}^{\star}$, in order of choice. Note that $w(e_i^{\star}) \geq w(e_{i+1}^{\star})$ since neither makes a cycle with $e_1^{\star}, e_2^{\star}, \ldots, e_{i-1}^{\star}$.

Let $f_1, f_2, \ldots, f_{n-1}$ be the edges of any other tree where $w(f_1) \ge w(f_2) \ge \cdots w(f_{n-1})$.

We show that

 $w(e_i^{\star}) \geq w(f_i) \qquad 1 \leq i \leq n-1.$ (1)

Suppose (1) is false. There exists k > 0 such that

 $w(e_i^{\star}) \geq w(f_i), \ 1 \leq i < k \text{ and } w(e_k^{\star}) < w(f_k).$

Each of f_i , $1 \le i \le k$ is either a member of $\{e_1^{\star}, e_2^{\star}, \ldots, e_{k-1}^{\star}\}$ or makes a cycle with $\{e_1^{\star}, e_2^{\star}, \ldots, e_{k-1}^{\star}\}$. Otherwise one of them would have been chosen in preference to e_k^{\star} .

Let the components of the forest $(V, \{e_1^{\star}, e_2^{\star}, \dots, e_{k-1}^{\star}\})$ be $C_1, C_2, \dots, C_{n-k+1}$. Each $f_i, 1 \leq i \leq k$ has both of its endpoints in the same component.

Let μ_i be the number of f_j which have both endpoints in C_i and let ν_i be the number of vertices of C_i . Then

$$\mu_1 + \mu_2 + \cdots + \mu_{n-k+1} = k$$
 (2)

$$\nu_1 + \nu_2 + \dots + \nu_{n-k+1} = n \tag{3}$$

It follows from (2) and (3) that there exists t such that

$$\mu_t \ge \nu_t. \tag{4}$$

[Otherwise

$$egin{array}{rll} n-k+1 \ \sum\limits_{i=1}^{n-k+1} \mu_i &\leq \sum\limits_{i=1}^{n-k+1} (
u_i-1) \ &= \sum\limits_{i=1}^{n-k+1}
u_i - (n-k+1) \ &= k-1. \end{array}$$

]

But (4) implies that the edges f_j such that $f_j \subseteq C_t$ contain a cycle.

How many trees? – Cayley's Formula

Prüfer's Correspondence

There is a 1-1 correspondence ϕ_V between spanning trees of K_V (the complete graph with vertex set V) and sequences V^{n-2} . Thus for $n \ge 2$

 $\tau(K_n) = n^{n-2}$ Cayley's Formula.

Assume some arbitrary ordering $V = \{v_1 < v_2 < \cdots < v_n\}$.

$\phi_V(T)$:

begin

 $T_1 := T;$

for i = 1 to n - 2 do

begin

 $s_i :=$ neighbour of least leaf ℓ_i of T_i .

 $T_{i+1} = T_i - \ell_i.$

end $\phi_V(T) = s_1 s_2 \dots s_{n-2}$

end

6,4,5,14,2,6,11,14,8,5,11,4,2

Lemma 3 $v \in V(T)$ appears exactly $d_T(v) - 1$ times in $\phi_V(T)$.

Proof Assume $n = |V(T)| \ge 2$. By induction on n.

n = 2: $\phi_V(T) = \Lambda$ = empty string.

Assume $n \geq 3$:

 $\phi_V(T) = s_1 \phi_{V_1}(T_1)$ where $V_1 = V - \{s_1\}$.

 s_1 appears $d_{T_1}(s_1) - 1 + 1 = d_T(s_1) - 1$ times - induction.

 $v \neq s_1$ appears $d_{T_1}(v) - 1 = d_T(v) - 1$ times - induction.

Construction of ϕ_V^{-1}

Inductively assume that for all |X| < n there is an inverse function ϕ_X^{-1} . (True for n = 2). Now define ϕ_V^{-1} by

$$\phi_V^{-1}(s_1s_2...s_{n-2}) = \phi_{V_1}^{-1}(s_2...s_{n-2}) \text{ plus edge } s_1\ell_1,$$

where $\ell_1 = \min\{s \colon s \notin s_1, s_2, ...s_{n-2}\}$ and $V_1 = V - \{\ell_1\}$. Then
 $\phi_V(\phi_V^{-1}(s_1s_2...s_{n-2})) = s_1\phi_{V_1}(\phi_{V_1}^{-1}(s_2...s_{n-2}))$
 $= s_1s_2...s_{n-2}.$

Thus ϕ_V has an inverse and the correspondence is established.

Number of trees with a given degree sequence

Corollary 5 If $d_1 + d_2 + \cdots + d_n = 2n - 2$ then the number of spanning trees of K_n with degree sequence d_1, d_2, \ldots, d_n is

 $\binom{n-2}{d_1-1, d_2-1, \ldots, d_n-1} = \frac{(n-2)!}{(d_1-1)!(d_2-1)!\cdots(d_n-1)!}.$

Proof From Prüfer's correspondence and Lemma 3 this is the number of sequences of length n - 2 in which 1 appears $d_1 - 1$ times, 2 appears $d_2 - 1$ times and so on.