Trees
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A tree is a graph which is
(a) Connected and

(b) has no cycles (acyclic).



Lemma 1 Let the components of GG be
C1,Co,...,Cr, Supposee = (u,v) ¢ E,u € C;, v €
C.

J

@) i=j=w(G+e)=w(@).

b) i=j=w(G+e) =w(G)—1.




Proof Every path P in G 4 e which is not in G
must contain e. Also,

w(G +e) <w(@).
Suppose

(r = ug, U1, ... , Uy = U, Upp1] = V,...,U = Y)

Is a path in G + e that uses e. Then clearly x € Cj
and y € CJ

(a) follows as now no new relations x ~ y are added.
(b) Only possible new relations = ~ y are for z € C;

andy € C;. Butu ~ vinG + e andso C; UC;j
becomes (only) new component. O



Lemma2 G = (V, E) is acyclic (forest) with (tree)
components C1,Cop,... ,Ci. |V| =n. e = (u,v) ¢
E,ue€ C;,vedl;.

(@) : = 7 = G + e contains a cycle.

(b) : = 5 = G + e is acyclic and has one less com-
ponent.

(c) G hasn — k edges.



(a) u, v € C; implies there exists a path
(u = ug,u1,... ,uy =v)in G.

So G + e contains the cycle ug, uq, ... , uy, up.




(b) Suppose GG + e contains the cycle C. e € C else
C'is a cycle of G.
C=(u=ug,ut,...,up =1v,ug)-

But then G contains the path (ug, w1, ... ,uy) fromu
to v — contradiction.

The drop in the number of components follows from
Lemma 1.



The rest follows from
(c) Suppose £ = {eq,en,... ,er} and
G; = (V,{e1,eo,...,e;}) for0 <i<r.

Claim: GG; has n — ¢« components.

Induction on «.

1 = 0: G has no edges.

¢ > 0: GG;_1 is acyclic and so is GG;. It follows from
part (a) that e; joins vertices in distinct components of
G;_1. It follows from (b) that G; has one less compo-
nent than G;_1.

End of proof of claim

Thus r = n — k (we assumed G had k£ components).
O



Corollary 1 Ifa tree T has n vertices then
(@) It hasn — 1 edges.
(b) It has at least 2 vertices of degree 1, (n > 2).

Proof (a) is part (c) of previous lemma. £ = 1
since 1’ is connnected.

(b) Let s be the number of vertices of degree 1 in T..
There are no vertices of degree 0 — these would form
separate components. Thus

2n—2 =) dp(v) > 2(n—s) +s.
veV

So s > 2. O



Theorem 1 Suppose |V| =n and |E| =n — 1. The
following three statements become equivalent,

(a) G is connected.

(b) G is acyclic.

(c) G is atree.

Let £ = {61,62, ce ,en_l} and
G; = (V,{el,eg,... ,ei}) forO <i:<n-—1.



(a) = (b): Gp has n components and G,,_1 has
1 component. Addition of each edge e; must reduce
the number of components by 1 — Lemma 2(b). Thus
(G;_1 acyclic implies G; is acyclic. (b) follows as G
Is acyclic.

(b) = (c): We need to show that G is connected.
Since G,,_1 is acyclic, w(G;) = w(G;_1) — 1 for

each : — Lemma 2(b). Thus w(G,,—1) = 1.

(¢) = (a): trivial.
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Corollary 2 If v is a vertex of degree 1 in a tree T
then'I’ — v is also a tree.

Proof Suppose 71" has n vertices and n— 1 edges.
Then T' — v has n — 1 vertices and n — 2 edges. It
acyclic and so must be a tree. O
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Cut edges

cut edge

e is a cut edge of G if w(G —e) > w(G).

Theorem 2 ¢ = (u,v) is a cut edge iff e is not on any
cycle of G5.

Proof w increases iff there exist x ~ y € V such
that all walks from z to y use e.

Suppose thereis a cycle (u, P, v, u) containing e. Then
if W = x, Wq,u,v, Ws,y is a walk from = to y using
e, v, W1, P, W5,y is a walk from z to y that doesn’t
use e. Thus e is not a cut edge.
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If e is not a cut edge then GG — e contains a path P from
u to v (u ~ v in G and relations are maintained after

deletion of ¢). So (v, u, P,v) is a cycle containing e.
O

Corollary 3 A connected graph is a tree iff every edge
Is a cut edge.
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Corollary 4 Every finite connected graph GG contains
a spanning tree.

Proof Consider the following process: starting with
G,

1. If there are no cycles — stop.

2. If there is a cycle, delete an edge of a cycle.

Observe that (i) the graph remains connected — we
delete edges of cycles. (ii) the process must terminate
as the number of edges is assumed finite.

On termination there are no cycles and so we have a
connected acyclic spanning subgraph i.e. we have a

spanning tree. O

14



Theorem 3 LetT be a spanning tree of G = (V, E),
V| =n. Suppose e = (u,v) € E\T.

(@) T + e contains a unique cycle C'(e).

(b) f € C(e) implies that T + e — f is a spanning
free of G5.
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Proof (a) Lemma 2(a) implies that 7" 4+ e has a
cycle C. Suppose that T" + e contains another cycle
C'#£ C. Letedge g c C'\C. T" =T +e—gis
connected, has n — 1 edges. But T’ contains a cycle
C, contradictng Lemma 2(b).

(b) T"+ e — f is connected and has n — 1 edges.
Therefore it is a tree. O
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Maximum weight trees
G = (V, E) is a connected graph.
w: E — R. w(e) is the weight of edge e.
For spanning tree 7', w(7T") = > .c7 w(e).

Problem: find a spanning tree of maximum weight.
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Greedy Algorithm

Sort edges so that £ = {eq,en,... ,em} where

w(ey) > w(ez) > -+ > wlem).

begin
T := 10
for:=1,2,... ,mdo
begin
if 7' + e; does not contain a cycle
then 7' < T + ¢;
end
Output T°
end

Greedy always adds the maximum weight edge which
does not make a cycle with previously chosen edges.
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Theorem 4 The tree constructed by GREEDY has max-
imum weight.

Proof Let the edges of the greedy tree be

1-

eX,ek, ... eX 1, inorder of choice. Note that w(e}) >
w(ejf_l_l) since neither makes a cycle with ey, e5, ... ;e

Let f1, fo,..., f,—1 be the edges of any other tree
where w(f1) > w(f2) > - w(fp—1)-

We show that

w(e]) >w(f;) 1<i<n—1. (1)
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Suppose (1) is false. There exists k > 0O such that

w(ed) > w(fy), 1<i<kandw(e}) < w(f).

Each of f;, 1 < i < k is either a member of
{e7l,e5,... ,e;_1} or makes a cycle with

{e1,e5,... ,e5_4}. Otherwise one of them would have
been chosen in preference to ej.

Let the components of the forest
(V,{ej,e5,...,e5_{})beC1,Co,...,C,_k4+1. Each
fi, 1 < i < k has both of its endpoints in the same
component.
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Let 11; be the number of f; which have both endpoints
in C; and let v; be the number of vertices of C;. Then

p1+ p2+ g1 k (2)
vitrvod vy g1 = 0 (3)

|t follows from (2) and (3) that there exists ¢ such that

pt > vt (4)
[Otherwise

n—k-+1 n—k-+1
> w > (y;—1)

n—k+1
Y yi—(n—k+1)
=1

k— 1.

IA

But (4) implies that the edges f; such that f; C C;
contain a cycle. O
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How many trees? — Cayley’s Formula
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Prufer’s Correspondence

There is a 1-1 correspondence ¢y, between spanning
trees of K7y, (the complete graph with vertex set V)
and sequences V" 2. Thus for n > 2

r(Kyp) = n"? Cayley’s Formula.

Assume some arbitrary ordering V. = {v; < vy <
o o < U’I’L}-

oy (T'):
begin
T =T,
forc=1ton —2do
begin
s; .= neighbour of least leaf Z; of T;.

end (ﬁv(T) = 8182...87,_92
end
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6,4,5,14,2,6,11,14,8,5,11,4,2
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Lemma 3 v € V(T) appears exactly dr(v)—1 times
in ¢y (T).

Proof Assume n = |V (T")| > 2. By induction on
n.
n = 2: ¢y (T) = N\ = empty string.

Assume n > 3:

oy (T) = s1¢y,(T1) where V1 =V — {s1}.

s1 appears dp, (s1) — 1+ 1 = dp(sy) — 1 times —

induction.

v # s1 appears dp, (v) — 1 = dp(v) — 1 times —

induction. O
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Construction of ¢,

Inductively assume that for all | X| < n there is an
inverse function qﬁ;(l. (True for n = 2).
Now define gb‘_/l by

(/5‘_/1(8182 c.8p_D) = ¢‘711(82 ...8,_2) plus edge s141,

where /1 = min{s: s ¢ s1,82,...5,_o}and V7 =

V — {¢1}. Then

o (py (5152 ..85-2)) = 31¢V1(¢1_/11(32 .. 8p—2))
= 8182...8,p,_92.

Thus ¢y, has an inverse and the correspondence is
established.

26



Number of trees with a given degree sequence

Corollary 5 Ifdi +do + --- + dn, = 2n — 2 then
the numoer of spanning trees of Ky, with degree se-
quence dq,do, ... ,dn IS

n—2 - (n—2)!
<d1—1,d2—1,... ,dn—1>  (di—DW(do— D!+ (dy — I

Proof From Prifer’s correspondence and Lemma
3 this is the number of sequences of length n — 2 in
which 1 appears d; — 1 times, 2 appears do — 1 times
and so on. O
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