Paths and Walks

 $W = (v_1, v_2, \dots, v_k) \text{ is a walk in } G \text{ if } (v_i, v_{i+1}) \in E \text{ for } 1 \leq i < k.$

A path is a walk in which the vertices are distinct.

 W_1 is a path, but W_2, W_3 are not.

$$W_1 = a,b,c,e,d$$

 $W_2 = a,b,a,c,e$
 $W_3 = g,f,c,e,f$

A walk is closed if $v_1 = v_k$. A cycle is a closed walk in which the vertices are distinct except for v_1, v_k .

b, c, e, d, b is a cycle.

b, c, a, b, d, e, c, b is not a cycle.

Connected components

We define a relation \sim on V. $a \sim b$ iff there is a walk from a to b.

 $a \sim b$ but $a \not\sim d$.

Claim: \sim is an equivalence relation.

reflexivity $v \sim v$ as v is a (trivial) walk from v to v.

Symmetry $u \sim v$ implies $v \sim u$.

 $(u = u_1, u_2, \dots, u_k = v)$ is a walk from u to v implies $(u_k, u_{k-1}, \dots, u_1)$ is a walk from v to u.

Transitivity $u \sim v$ and $v \sim w$ implies $u \sim w$.

 $W_1 = (u = u_1, u_2, \dots, u_k = v)$ is a walk from u to v and $W_2 = (v_1 = v, v_2, v_3, \dots, v_\ell = w)$ is a walk from v to w imples that $(W_1, W_2) = (u_1, u_2, \dots, u_k, v_2, v_3, \dots, v_\ell)$ is a walk from u to w.

The equivalence classes of \sim are called *connected components*.

In general $V = C_1 \cup V_2 \cup \cdots \cup C_r$ where C_1, C_2, \ldots , C_r are the connected comonents.

We let $\omega(G)(=r)$ be the number of components of G.

G is *connected* iff $\omega(G) = 1$ i.e. there is a walk between every pair of vertices.

Thus C_1, C_2, \ldots, C_r induce connected subgraphs $G[C_1], \ldots, G[C_r]$ of G

For a walk W we let $\ell(W) =$ no. of edges in W.

Lemma 1 Suppose W is a walk from vertex a to vertex b and that W minimises ℓ over all walks from a to b. Then W is a path.

Proof Suppose $W = (a = a_0, a_1, \dots, a_k = b)$ and $a_i = a_j$ where $0 \le i < j \le k$. Then $W' = (a_0, a_1, \dots, a_i, a_{j+1}, \dots, a_k)$ is also a walk from a to b and $\ell(W') = \ell(W) - (j - i) < \ell(W) - contradiction. <math>\Box$

Corollary 1 If $a \sim b$ then there is a path from a to b.

So G is connected $\leftrightarrow \forall a, b \in V$ there is a path from a to b.

Breadth First Search – BFS

Fix
$$v \in V$$
. For $w \in V$ let

d(v, w) =length of shortest path from v to w. For t = 0, 1, 2, ..., let

$$A_t = \{ w \in V : d(v, w) = t \}.$$

 $A_0 = \{v\}$ and $v \sim w \leftrightarrow d(v,w) < \infty$.

In BFS we construct
$$A_0, A_1, A_2, \dots$$
, by
 $A_{t+1} = \{ w \notin A_0 \cup A_1 \cup \dots \cup A_t : \exists an edge \}$

(u,w) such that $u \in A_t$ }.

Note : no edges
$$(a,b)$$
 between A_k and A_ℓ
for $\ell - k \ge 2$, else $w \in A_{k+1} \ne A_\ell$.
(1)

In this way we can find all vertices in the same component C as v.

By repeating for $v' \notin C$ we find another component etc.

Characterisation of bipartite graphs

Theorem 1 G is bipartite \leftrightarrow G has no cycles of odd length.

Proof \rightarrow : $G = (X \cup Y, E)$.

Suppose $C = (u_1, u_2, \dots, u_k, u_1)$ is a cycle. Suppose $u_1 \in X$. Then $u_2 \in Y, u_3 \in X, \dots, u_k \in Y$ implies k is even.

 \leftarrow Assume G is connected, else apply following argument to each component.

Choose $v \in V$ and construct A_0, A_1, A_2, \ldots , by BFS.

 $X = A_0 \cup A_2 \cup A_4 \cup \cdots$ and $Y = A_1 \cup A_3 \cup A_5 \cup \cdots$

We need only show that X and Y contain no edges and then all edges must join X and Y. Suppose X contains edge (a, b) where $a \in A_k$ and $b \in A_\ell$.

(i) If $k \neq \ell$ then $|k - \ell| \ge 2$ which contradicts (1)

(ii) $k = \ell$:

There exist paths $(v = v_0, v_1, v_2, ..., v_k = a)$ and $(v = w_0, w_1, w_2, ..., w_k = b)$.

Let $j = \max\{t : v_t = w_t\}$.

 $(v_j, v_{j+1}, \ldots, v_k, w_k, w_{k-1}, \ldots, w_j)$

is an odd cycle – length 2(k-j)+1 – contradiction.