
Paths and Walks

W = (v

1
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2

; : : : ; v

k

) is a walk in G if (v

i

; v

i+1

) 2

E for 1 � i < k.

A path is a walk in whih the verties are dis-

tint.

W

1

is a path, but W
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;W

3

are not.
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A walk is losed if v

1

= v

k

. A yle is a losed

walk in whih the verties are distint exept

for v

1

; v

k

.

b; ; e; d; b is a yle.

b; ; a; b; d; e; ; b is not a yle.
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Conneted omponents

We de�ne a relation � on V .

a � b i� there is a walk from a to b.

a

b

c

d e

f
g

a � b but a 6� d.

Claim: � is an equivalene relation.

reexivity v � v as v is a (trivial) walk from v

to v.

Symmetry u � v implies v � u.

(u = u

1

; u

2

: : : ; u

k

= v) is a walk from u to

v implies (u

k

; u

k�1

; : : : ; u

1

) is a walk from

v to u.
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Transitivity u � v and v � w implies u � w.

W

1

= (u = u

1

; u

2

: : : ; u

k

= v) is a walk from

u to v and W

2

= (v

1

= v; v

2

; v

3

; : : : ; v

`

= w)

is a walk from v to w imples that

(W

1

;W

2

) = (u

1

; u

2

: : : ; u

k

; v

2

; v

3

; : : : ; v

`

) is

a walk from u to w.

The equivalene lasses of � are alled on-

neted omponents.

In general V = C

1

[V

2

[� � �[C

r

where C

1

; C

2

; : : : ;

C

r

are the onneted omonents.

We let !(G)(= r) be the number of ompo-

nents of G.

G is onneted i� !(G) = 1 i.e. there is a walk

between every pair of verties.

Thus C

1

; C

2

; : : : ; C

r

indue onneted subgraphs

G[C

1

℄; : : : ; G[C

r

℄ of G
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For a walk W we let `(W ) = no. of edges in

W .

l(W)=6

Lemma 1 Suppose W is a walk from vertex

a to vertex b and that W minimises ` over all

walks from a to b. Then W is a path.

Proof Suppose W = (a = a

0

; a

1

; : : : ; a

k

=

b) and a

i

= a

j

where 0 � i < j � k. Then

W

0

= (a

0

; a

1

; : : : ; a

i

; a

j+1

; : : : ; a

k

) is also a walk

from a to b and `(W

0

) = `(W )� (j � i) < `(W )

{ ontradition. 2

Corollary 1 If a � b then there is a path from

a to b.

So G is onneted $ 8a; b 2 V there is a path

from a to b.
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Breadth First Searh { BFS

Fix v 2 V . For w 2 V let

d(v;w) = length of shortest path from v to w:

For t = 0;1;2; : : : ; let

A

t

= fw 2 V : d(v; w) = tg:

v
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A

0

= fvg and v � w $ d(v;w) <1.
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In BFS we onstrut A

0

; A

1

; A

2

; : : : ; by

A

t+1

= fw =2 A

0

[A

1

[ � � � [A

t

: 9 an edge

(u;w) suh that u 2 A

t

g:

Note : no edges (a; b) between A

k

and A

`

for `� k � 2; else w 2 A

k+1

6= A

`

:

(1)

In this way we an �nd all verties in the same

omponent C as v.

By repeating for v

0

=2 C we �nd another om-

ponent et.
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Charaterisation of bipartite graphs

Theorem 1 G is bipartite $ G has no yles

of odd length.

Proof !: G = (X [ Y;E).

X

Y X

Y

XY

Typical Cycle

Suppose C = (u

1

; u

2

; : : : ; u

k

; u

1

) is a yle. Sup-

pose u

1

2 X. Then u

2

2 Y; u

3

2 X; : : : ; u

k

2 Y

implies k is even.
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 Assume G is onneted, else apply following

argument to eah omponent.

Choose v 2 V and onstrut A

0

; A

1

; A

2

; : : : ; by

BFS.

X = A

0

[A

2

[A

4

[� � � and Y = A

1

[A

3

[A

5

[� � �

We need only show that X and Y ontain no

edges and then all edges must join X and Y .

Suppose X ontains edge (a; b) where a 2 A

k

and b 2 A

`

.

(i) If k 6= ` then jk � `j � 2 whih ontradits

(1)
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(ii) k = `:

v
v

a

bj

There exist paths (v = v

0

; v

1

; v

2

; : : : ; v

k

= a)

and (v = w

0

; w

1

; w

2

; : : : ; w

k

= b).

Let j = maxft : v

t

= w

t

g.

(v

j

; v

j+1

; : : : ; v

k

; w

k

; w

k�1

; : : : ; w

j

)

is an odd yle { length 2(k� j)+1 { ontra-

dition. 2
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