Paths and Walks

W = (v1,v2,...,v) isawalkin G if (v;,v;41) €
E for 1 <1 <k.

A path is a walk in which the vertices are dis-
tinct.

W4 is a path, but W5, W3 are not.
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A walk is closed if vi = vi.. A cycle is a closed
walk in which the vertices are distinct except
for vy, vg.

b,c,e,d,b is a cycle.

b,c,a,b,d,e,c,b is not a cycle.
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Connected components

We define a relation ~ on V.
a ~ b iff there is a walk from a to b.
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a~b but ad.

Claim: ~ is an equivalence relation.

reflexivity v ~ v as v is a (trivial) walk from v
to v.

Symmetry u ~ v implies v ~ .
(u =wuq,un...,u, =wv) is a walk from u to
v implies (up,up_1,...,u1) IS a walk from
v TO w.



Transitivity v ~ v and v ~ w implies u ~ w.
Wi =(u=uj,us...,u, =v)isawalk from
u to v and Wy = (v1 = v,vp,v3,... ,0y = w)
is a walk from v to w imples that
(W1, W) = (uq,un...,u,02,03,...,0y) IS
a walk from u to w.

The equivalence classes of ~ are called con-
nected components.

In general V = C7UVLU- - -UCr where C,C5, ...,
C, are the connected comonents.

We let w(G)(= r) be the number of compo-
nents of G.

G is connected iff w(G) = 1 i.e. there is a walk
between every pair of vertices.

Thus Cq,C5,...,Crinduce connected subgraphs
G[C4], ... ,G[Cy] of G



For a walk W we let /(W) = no. of edges in
W.

/W\ 1(W)=6

Lemma 1 Suppose W is a walk from vertex
a to vertex b and that W minimises ¢ over all
walks from a to b. Then W is a path.

Proof Suppose W = (a = ag,a1,... ,a =
b) and a; = a; where 0 < ¢ < j < k. Then
W' = (ag,a1,...,a;,a;41,... ,a;) is also a walk
from a to b and (W) =4(W) — (5 —1) < L(W)
— contradiction. O

Corollary 1 Ifa ~ b then there is a path from
a to b.

So G is connected <> Va,b € V there is a path
from a to b.



Breadth First Search — BFS

FixveV. ForweeV let

d(v,w) = length of shortest path from v to w.

Fort=0,1,2,..., let

Ar={weV: dlv,w) =t}

A A Ag
A 2 3
Vv
A
A3 As 1
Aq

Ag = {v} and v ~w « d(v,w) < oco.



In BFS we construct Ag, A1, Ao, ..., by

Ay = {wg AgUAU---UA;: Jan edge
(u,w) such that u € A;}.

Note: no edges (a,b) between A, and Ay
for{ —k > 2, else w € Ak—l—l = Ay.

(1)

In this way we can find all vertices in the same
component C as v.

By repeating for v/ ¢ C we find another com-
ponent etc.



Characterisation of bipartite graphs

Theorem 1 G is bipartite <+ G has no cycles
of odd length.

Proof —: G=(XUY,E).
Y X
X Y Typical Cycle
Y X
Suppose C = (ui,un,...,up,uy) iS a cycle. Sup-

pose u1 € X. Then uy € Yyuz € X,... ,u, €Y
implies k£ is even.



<+ Assume G is connected, else apply following
argument to each component.

Choose v € V and construct Ag, A1, Ao, ..., by
BFS.

X = AgUA>UAyU--- and Y = AJUA3UAsU- --

We need only show that X and Y contain no
edges and then all edges must join X and Y.
Suppose X contains edge (a,b) where a € A,
and b € Ag.

(1) If k£ # ¢ then |k — ¢| > 2 which contradicts
(1)



(i) k = ¢:

There exist paths (v = vg,v1,v0,...,v, = a)
and (v = wqg, w1, wy,... ,w, =Db).

Let j = max{t: vy = w¢}.

(vj7vj—|—17 vy Uy WEy W15 - - - 7w])

is an odd cycle — length 2(k —j) + 1 — contra-
diction. O
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