Graph Theory

 $V = \{a,b,c,d,e,f,g,h,k\}$ E={(a,b),(a,g),(a,h),(a,k),(b,c),(b,k),...,(h,k)} |E|=16.

Eulerian Graphs

Can you draw the diagram below without taking your pen off the paper or going over the same line twice?

Bipartite Graphs

G is bipartite if $V = X \cup Y$ where X and Y are disjoint and every edge is of the form (x, y) where $x \in X$ and $y \in Y$

In the diagram below, A, B, C, D are women and a, b, c, d are men. There is an edge joining x and y iff x and y like each other. The thick edges form a "perfect matching" enabling everybody to be paired with someone they like. Not all graphs will have perfect matching!

Vertex Colouring

Colours {R,B,G}

Let $C = \{colors\}$. A vertex colouring of G is a map $f: V \to C$. We say that $v \in V$ gets coloured with $f(v)$.

The colouring is proper iff $(a, b) \in E \Rightarrow f(a) \neq 0$ $f(b)$.

The Chromatic Number $\chi(G)$ is the minimum number of colours in a proper colouring.

Application: $V = \{$ exams $\}$. (a, b) is an edge iff there is some student who needs to take both exams. $\chi(G)$ is the minimum number of periods required in order that no student is s
heduled to take two exams at once.

Subgraphs

 $G^{\prime}\,=\, \left(\,V^{\prime}, E^{\prime}\,\right)$ is a *subgraph* of $G\,=\, \left(\,V, E\,\right)$ if $V' \subseteq V$ and $E' \subseteq E$. G^{\prime} is a *spanning* subgraph if $V^{\prime}=V$.

If $V' \subseteq V$ then

 $G[V'] = (V', \{(u, v) \in E : u, v \in V'\})$ is the subgraph of G induced by V' .

 $G[{a,b,c,d,e}]$

Similarly, if $E_1 \subseteq E$ then $G[E_1] = (V_1, E_1)$ where

 $V_1 = \{v \in V_1 : \exists e \in E_1 \text{ such that } v \in e\}$ is also *induced* (by E_1).

 $E_1 = \{(a,b), (a,d)\}\$

 $G[E_1]$

Isomorphism

 $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ are isomorphic if there exists a bijection $f: V_1 \rightarrow V_2$ such that

 $(v, w) \in E_1 \leftrightarrow (f(v), f(w)) \in E_2.$

 $f(a)=A$ etc.

Complete Graphs

 $K_n = ([n], \{(i, j) : 1 \leq i < j \leq n\})$

is the complete graph on n vertices.

 $K_{m,n} = ([m] \cup [n], \{(i,j) : i \in [m], j \in [n]\})$

is the complete bipartite graph on $m + n$ vertices.

(The notation is a little imprecise but hopefully clear.)

 $K_{2,3}$

 K_{5}

Vertex Degrees

- $d_G(v)$ = degree of vertex v in G
	- $=$ number of edges incident with v

$$
\delta(G) = \min_v d_G(v)
$$

$$
\Delta(G) = \max_{v} d_G(v)
$$

(a)=2, $d_G(g)=4$ etc.

 $δ(G)=2, Δ(G)=4.$

Matrices and Graphs

Incidence matrix $M: V \times E$ matrix.

$$
M(v,e) = \left\{ \begin{array}{ll} 1 & v \in e \\ 0 & v \notin e \end{array} \right.
$$

Adjacency matrix $A: V \times V$ matrix.

$$
A(v,w) = \left\{ \begin{array}{ll} 1 & v,w \text{ adjacent} \\ 0 & \text{otherwise} \end{array} \right.
$$

Theorem 1

$$
\sum_{v \in V} d_G(v) = 2|E|
$$

Proof Consider the incidence matrix M. Row v has $d_G(v)$ 1's. So

> $\#$ 1's in matrix M is $|\sum$ va variant successive and the second contract of the contract $d_G(v).$

Column ^e has 2 1's. So

1's in matrix M is $2|E|$.

 \Box

Corollary 1 In any graph, the number of vertices of odd degree, is even.

Proof Let $ODD = \{odd degree vertices\}$ and $EVEN = V \setminus ODD$.

$$
\sum_{v \in ODD} d(v) = 2|E| - \sum_{v \in EVEN} d(v)
$$

is even.

So $|ODD|$ is even.

 \Box