Two applications in Computer Science

Sorting. Assume we are given n boxes, Bq, B»,
., Bn. Box B; contains a distinct number z;
which we are not allowed to see.

In each step, we are allowed to compare the
contents of two boxes B;, B; of our choice i.e.
determine whether z; <z, or z; > x;.

How many comparisons do we have to do in or-
der to be able to sort the boxes into increasing
order of their contents?

More precisely let

C(A,I) = number of comparisons of
algorithm A on instance I
and

T = min max C(A,I).
(n) =mi max (A, I)



Theorem 1

T(n) =nlogsn + O(n)

i.e. there exist cq,co such that

nlogon —cin <T(n) <nlogsn + con.

Proof We represent each algorithm A by
a binary decision tree T'(A):

root

X1<x2

X2<xX3
1,2,3

X1<x3
1,3,2 3,1,2

In the above algorithm we first compare z1, x».
If x1 < xo we compare xo,x3 and so on.



A leaf v of the tree (a vertex with no descen-
dants) is labelled by the order implied by the
path from the root to v. Thus in the tree
above, the leftmost leaf is labelled by 1,2,3
since the labels on the edges to the root are
r1 < xo and xzo < x3.

We can assume that for every path of the tree
there is a (unique) ordering of the boxes which
“satisfies” the labels of the path, otherwise we
can remove some edges of the tree.

The height h(T) of a tree T is the maximum
number of edges in a path from the root to a
leaf. The depth of a vertex v is the number of
edges in the path from the root to w.

mIax C(A,I) = h(T(A)). (1)
We will prove the following

Lemma 1 A binary tree of height h has at
most 2" leaves.



Now for any A, T(A) has n! leaves, one for
each possible ordering of the boxes. Lemma 1
implies then that for all A,

h(T(A)) > loga(n!) >loga((n/e)™)
= nlogon — O(n).
Thus
T(n) > nlogon — O(n).



Proof of Lemma 1 By induction on the height
h. It is simple for h = 1 and so assume that
any tree of height A’/ < h has at most 2l leaves
and let 7' be a binary tree of height Ah. Suppose
it has k leaves.

Delete all the leaves of T' of depth A and the
edges incident with them. We obtain a tree
T' of height h — 1 which has k; leaves which
are also leaves of T and k, leaves which are
immmediate ancestors of leaves of 1" of height
h. The result follows from

ki + ko> <21 and k < ky + 2ko.



Merge Sort

MS(n)
If n > 2;
Partition boxes into 2 sets of size |n/2], [n/2];
Apply MS(|n/2]) to first set to get sorted
list Lq;
Apply MS([n/2]) to second set to get sorted
list Lo;
MERGE the 2 sorted lists:
Create sorted list L as follows:
Repeatedly delete the minimum « of
front(Lq), front(L>) until Ly, Lo are both
empty;
Place x at the back of list L

At the end of this procedure, L contains the
boxes in sorted order.



Let C'(n) be the maximum number of compar-
isons that MS(n) uses to sort n elements. It
IS not easy to see what this is directly, instead
we set up a recurrence.

C(1) =0 and
C(n) < C([n/2]) +C(In/2]) +n—-1. (2)

Lemma 2
C(n) <nlogon+n

Proof By induction on n. This clearly
true for n = 1. Assume n > 2.

Case 1: n = 2m is even.

Applying (2) we see that

Cln) < 2(mlogom+m)+n-—-1
= nlogon+n— 1.



Case 2: n=2m -+ 1 is odd. Applying (2) we
see that

C(n) < mlogom+m+ (m -+ 1)loga(m + 1)
+m+14+n-1

= nlogon 4+ n — an.

where
an = 1-"31l0ga(1~ 1) — "Flloga(1+ )
00 n—(2k+1)
= 1—(log.2) !
2 R+ D+ 2)
> 0.



Fast multiplication. Assume, that we have
to multiply two decimal numbers, both are of
length n. If we multiply them digit by digit,
then we have to make n? (digit-by-digit) mul-
tiplications. How can we reduce this number
for large n?

Assume that n = 2F for some integer k& and
that the two numbers are a = 10™"/2ay + ao,
and b = 10"/2b; + b, Where a1, a»,by, b, are all
n/2 digit numbers. Then

ab = 10"a1b1 + 10™2(a1bs + aoby) + anbs
= 10"a1b1 +
10™2((ap + a1)(by + b2) — a1by — azby)
+aobo

What has been gained?



Let M(n) denote the total number of 2 digit
multiplications and additions needed if we carry
out the computation as indicated. Then

M(n) <3M(n/2) + 4n.

3M(n/2) comes from the 3 multiplications,
a1by,azby and (az + a1)(by + b2).

The 4n comes from the remaining additions.

Multiplying by a power of 10 is ighored, and
only involves O(n) work.

10



Let a;, = M(2F) so that ag = M (1) = 1 and
ag S 3ak_1 —|— 2k+2.
Dividing by 3% we get

k
ag ar_1 2
3k S ge1 T (5)

k—1
ag—1 Af—2 2
= (§>

- < aot+4

11



So

k
ag 2 (2)
Rk _ < 41144, =
3k B <+3+ + 3 )

< A — 10

> = 12.

1-3
So

ap, < 13 x3F=13x3/092n

M(n) < 13 x nl9923,

If n is not a power of 2 then we can pad it
out with < n zeros to make it one. Thus

M(n) = O(nl°923),

12



