
Two appliations in Computer Siene

Sorting. Assume we are given n boxes, B

1

; B

2

;

: : : ; B

n

. Box B

i

ontains a distint number x

i

whih we are not allowed to see.

In eah step, we are allowed to ompare the

ontents of two boxes B

i

; B

j

of our hoie i.e.

determine whether x

i

< x

j

or x

i

> x

j

.

How many omparisons do we have to do in or-

der to be able to sort the boxes into inreasing

order of their ontents?

More preisely let

C(A; I) = number of omparisons of

algorithm A on instane I

and

T (n) = min

A

max

I:jIj=n

C(A; I):

1



Theorem 1

T (n) = n log

2

n+O(n)

i.e. there exist 

1

; 

2

suh that

n log

2

n� 

1

n � T (n) � n log

2

n+ 

2

n:

Proof We represent eah algorithm A by

a binary deision tree T (A):

x1<x2 x1>x2

x2<x3 x2>x3

x1<x3 x1>x3

1,2,3

1,3,2 3,1,2

root

In the above algorithm we �rst ompare x

1

; x

2

.

If x

1

< x

2

we ompare x

2

; x

3

and so on.

2



A leaf v of the tree (a vertex with no desen-

dants) is labelled by the order implied by the

path from the root to v. Thus in the tree

above, the leftmost leaf is labelled by 1,2,3

sine the labels on the edges to the root are

x

1

< x

2

and x

2

< x

3

.

We an assume that for every path of the tree

there is a (unique) ordering of the boxes whih

\satis�es" the labels of the path, otherwise we

an remove some edges of the tree.

The height h(T ) of a tree T is the maximum

number of edges in a path from the root to a

leaf. The depth of a vertex v is the number of

edges in the path from the root to v.

max

I

C(A; I) = h(T (A)): (1)

We will prove the following

Lemma 1 A binary tree of height h has at

most 2

h

leaves.

3



Now for any A, T (A) has n! leaves, one for

eah possible ordering of the boxes. Lemma 1

implies then that for all A,

h(T (A)) � log

2

(n!) � log

2

((n=e)

n

)

= n log

2

n�O(n):

Thus

T (n) � n log

2

n�O(n):

4



Proof of Lemma 1 By indution on the height

h. It is simple for h = 1 and so assume that

any tree of height h

0

< h has at most 2

h

0

leaves

and let T be a binary tree of height h. Suppose

it has k leaves.

Delete all the leaves of T of depth h and the

edges inident with them. We obtain a tree

T

0

of height h � 1 whih has k

1

leaves whih

are also leaves of T and k

2

leaves whih are

immmediate anestors of leaves of T of height

h. The result follows from

k

1

+ k

2

� 2

h�1

and k � k

1

+2k

2

:

2

5



Merge Sort

MS(n)

If n � 2;

Partition boxes into 2 sets of size bn=2; dn=2e;

Apply MS(bn=2) to �rst set to get sorted

list L

1

;

Apply MS(dn=2e) to seond set to get sorted

list L

2

;

MERGE the 2 sorted lists:

Create sorted list L as follows:

Repeatedly delete the minimum x of

front(L

1

); front(L

2

) until L

1

; L

2

are both

empty;

Plae x at the bak of list L

At the end of this proedure, L ontains the

boxes in sorted order.

6



Let C(n) be the maximum number of ompar-

isons that MS(n) uses to sort n elements. It

is not easy to see what this is diretly, instead

we set up a reurrene.

C(1) = 0 and

C(n) � C(bn=2) + C(dn=2e) + n� 1: (2)

Lemma 2

C(n) � n log

2

n+ n

Proof By indution on n. This learly

true for n = 1. Assume n � 2.

Case 1: n = 2m is even.

Applying (2) we see that

C(n) � 2(m log

2

m+m) + n� 1

= n log

2

n+ n� 1:

7



Case 2: n = 2m+ 1 is odd. Applying (2) we

see that

C(n) � m log

2

m+m+ (m+1) log

2

(m+1)

+m+1+ n� 1

= n log

2

n+ n� �

n

:

where

�

n

= 1�

n�1

2

log

2

(1�

1

n

)�

n+1

2

log

2

(1 +

1

n

)

= 1� (log

e

2)

�1

1

X

k=0

n

�(2k+1)

(2k+1)(2k+2)

� 0:

2

8



Fast multipliation. Assume, that we have

to multiply two deimal numbers, both are of

length n. If we multiply them digit by digit,

then we have to make n

2

(digit-by-digit) mul-

tipliations. How an we redue this number

for large n?

Assume that n = 2

k

for some integer k and

that the two numbers are a = 10

n=2

a

1

+ a

2

,

and b = 10

n=2

b

1

+ b

2

where a

1

; a

2

; b

1

; b

2

are all

n=2 digit numbers. Then

ab = 10

n

a

1

b

1

+10

n=2

(a

1

b

2

+ a

2

b

1

) + a

2

b

2

= 10

n

a

1

b

1

+

10

n=2

((a

2

+ a

1

)(b

1

+ b

2

)� a

1

b

1

� a

2

b

2

)

+a

2

b

2

What has been gained?

9



Let M(n) denote the total number of 2 digit

multipliations and additions needed if we arry

out the omputation as indiated. Then

M(n) � 3M(n=2) + 4n:

3M(n=2) omes from the 3 multipliations,

a

1

b

1

; a

2

b

2

and (a

2

+ a

1

)(b

1

+ b

2

).

The 4n omes from the remaining additions.

Multiplying by a power of 10 is ignored, and

only involves O(n) work.

10



Let a

k

=M(2

k

) so that a

0

=M(1) = 1 and

a

k

� 3a

k�1

+2

k+2

:

Dividing by 3

k

we get

a

k

3

k

�

a

k�1

3

k�1

+4�

�

2

3

�

k

a

k�1

3

k�1

�

a

k�2

3

k�2

4�

�

2

3

�

k�1

.

.

.

a

1

3

� a

0

+4

11



So

a

k

3

k

� 1 � 4

 

1+

2

3

+ � � �+

�

2

3

�

k

!

<

4

1�

2

3

= 12:

So

a

k

� 13� 3

k

= 13� 3

log

2

n

M(n) � 13� n

log

2

3

:

If n is not a power of 2 then we an pad it

out with < n zeros to make it one. Thus

M(n) = O(n

log

2

3

):

12


