
Two appli
ations in Computer S
ien
e

Sorting. Assume we are given n boxes, B

1

; B

2

;

: : : ; B

n

. Box B

i


ontains a distin
t number x

i

whi
h we are not allowed to see.

In ea
h step, we are allowed to 
ompare the


ontents of two boxes B

i

; B

j

of our 
hoi
e i.e.

determine whether x

i

< x

j

or x

i

> x

j

.

How many 
omparisons do we have to do in or-

der to be able to sort the boxes into in
reasing

order of their 
ontents?

More pre
isely let

C(A; I) = number of 
omparisons of

algorithm A on instan
e I

and

T (n) = min

A

max

I:jIj=n

C(A; I):

1



Theorem 1

T (n) = n log

2

n+O(n)

i.e. there exist 


1

; 


2

su
h that

n log

2

n� 


1

n � T (n) � n log

2

n+ 


2

n:

Proof We represent ea
h algorithm A by

a binary de
ision tree T (A):

x1<x2 x1>x2

x2<x3 x2>x3

x1<x3 x1>x3

1,2,3

1,3,2 3,1,2

root

In the above algorithm we �rst 
ompare x

1

; x

2

.

If x

1

< x

2

we 
ompare x

2

; x

3

and so on.

2



A leaf v of the tree (a vertex with no des
en-

dants) is labelled by the order implied by the

path from the root to v. Thus in the tree

above, the leftmost leaf is labelled by 1,2,3

sin
e the labels on the edges to the root are

x

1

< x

2

and x

2

< x

3

.

We 
an assume that for every path of the tree

there is a (unique) ordering of the boxes whi
h

\satis�es" the labels of the path, otherwise we


an remove some edges of the tree.

The height h(T ) of a tree T is the maximum

number of edges in a path from the root to a

leaf. The depth of a vertex v is the number of

edges in the path from the root to v.

max

I

C(A; I) = h(T (A)): (1)

We will prove the following

Lemma 1 A binary tree of height h has at

most 2

h

leaves.

3



Now for any A, T (A) has n! leaves, one for

ea
h possible ordering of the boxes. Lemma 1

implies then that for all A,

h(T (A)) � log

2

(n!) � log

2

((n=e)

n

)

= n log

2

n�O(n):

Thus

T (n) � n log

2

n�O(n):

4



Proof of Lemma 1 By indu
tion on the height

h. It is simple for h = 1 and so assume that

any tree of height h

0

< h has at most 2

h

0

leaves

and let T be a binary tree of height h. Suppose

it has k leaves.

Delete all the leaves of T of depth h and the

edges in
ident with them. We obtain a tree

T

0

of height h � 1 whi
h has k

1

leaves whi
h

are also leaves of T and k

2

leaves whi
h are

immmediate an
estors of leaves of T of height

h. The result follows from

k

1

+ k

2

� 2

h�1

and k � k

1

+2k

2

:

2

5



Merge Sort

MS(n)

If n � 2;

Partition boxes into 2 sets of size bn=2
; dn=2e;

Apply MS(bn=2
) to �rst set to get sorted

list L

1

;

Apply MS(dn=2e) to se
ond set to get sorted

list L

2

;

MERGE the 2 sorted lists:

Create sorted list L as follows:

Repeatedly delete the minimum x of

front(L

1

); front(L

2

) until L

1

; L

2

are both

empty;

Pla
e x at the ba
k of list L

At the end of this pro
edure, L 
ontains the

boxes in sorted order.

6



Let C(n) be the maximum number of 
ompar-

isons that MS(n) uses to sort n elements. It

is not easy to see what this is dire
tly, instead

we set up a re
urren
e.

C(1) = 0 and

C(n) � C(bn=2
) + C(dn=2e) + n� 1: (2)

Lemma 2

C(n) � n log

2

n+ n

Proof By indu
tion on n. This 
learly

true for n = 1. Assume n � 2.

Case 1: n = 2m is even.

Applying (2) we see that

C(n) � 2(m log

2

m+m) + n� 1

= n log

2

n+ n� 1:

7



Case 2: n = 2m+ 1 is odd. Applying (2) we

see that

C(n) � m log

2

m+m+ (m+1) log

2

(m+1)

+m+1+ n� 1

= n log

2

n+ n� �

n

:

where

�

n

= 1�

n�1

2

log

2

(1�

1

n

)�

n+1

2

log

2

(1 +

1

n

)

= 1� (log

e

2)

�1

1

X

k=0

n

�(2k+1)

(2k+1)(2k+2)

� 0:

2

8



Fast multipli
ation. Assume, that we have

to multiply two de
imal numbers, both are of

length n. If we multiply them digit by digit,

then we have to make n

2

(digit-by-digit) mul-

tipli
ations. How 
an we redu
e this number

for large n?

Assume that n = 2

k

for some integer k and

that the two numbers are a = 10

n=2

a

1

+ a

2

,

and b = 10

n=2

b

1

+ b

2

where a

1

; a

2

; b

1

; b

2

are all

n=2 digit numbers. Then

ab = 10

n

a

1

b

1

+10

n=2

(a

1

b

2

+ a

2

b

1

) + a

2

b

2

= 10

n

a

1

b

1

+

10

n=2

((a

2

+ a

1

)(b

1

+ b

2

)� a

1

b

1

� a

2

b

2

)

+a

2

b

2

What has been gained?

9



Let M(n) denote the total number of 2 digit

multipli
ations and additions needed if we 
arry

out the 
omputation as indi
ated. Then

M(n) � 3M(n=2) + 4n:

3M(n=2) 
omes from the 3 multipli
ations,

a

1

b

1

; a

2

b

2

and (a

2

+ a

1

)(b

1

+ b

2

).

The 4n 
omes from the remaining additions.

Multiplying by a power of 10 is ignored, and

only involves O(n) work.

10



Let a

k

=M(2

k

) so that a

0

=M(1) = 1 and

a

k

� 3a

k�1

+2

k+2

:

Dividing by 3

k

we get

a

k

3

k

�

a

k�1

3

k�1

+4�

�

2

3

�

k

a

k�1

3

k�1

�

a

k�2

3

k�2

4�

�

2

3

�

k�1

.

.

.

a

1

3

� a

0

+4

11



So

a

k

3

k

� 1 � 4

 

1+

2

3

+ � � �+

�

2

3

�

k

!

<

4

1�

2

3

= 12:

So

a

k

� 13� 3

k

= 13� 3

log

2

n

M(n) � 13� n

log

2

3

:

If n is not a power of 2 then we 
an pad it

out with < n zeros to make it one. Thus

M(n) = O(n

log

2

3

):

12


